Current microarray assay technology predominately uses fluorescence as a detectable signal end point. This study assessed real-time in situ surface hybridization capture kinetics for single printed DNA microspots on solid array surfaces using fluorescence. The influence of the DNA target and probe cyanine dye position on oligo-DNA duplex formation behavior was compared in solution versus surface-hybridized single DNA printed spots using fluorescence resonance energy transfer (FRET) analysis. Fluorophore Cy3/Cy5 fluorescence intensities were analyzed both through the printed hybridized DNA spot thickness and radially across single-spot surfaces. Confocal single-spot imaging shows that real-time in situ hybridization kinetics with constant target concentrations changes as a function of the printed probe density. Target-specific imaging in single spots exhibits a heterogeneous printed probe radial density that influences hybridization spatially and temporally via radial hemispherical diffusion of dye-labeled target from the outside edge of the spot to the interior. FRET of the surface-captured target occurs irrespective of the probe/target fluorophore position, resulting from excess printed probe density and spot thickness. Both heterogeneous probe density distributions in printed spots and the fluorophore position on short DNA oligomers influence duplex formation kinetics, hybridization efficiencies, and overall fluorescence intensity end points in surface-capture formats. This analysis is important to understanding, controlling, and quantifying the array assay signal essential to reliable application of the surface-capture format.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3593098 | PMC |
http://dx.doi.org/10.1021/ac302165h | DOI Listing |
J Sci Food Agric
January 2025
College of Food Science and Technology, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China.
Background: Multifunctional fluorescent probes have attracted much attention due to their wide range of applications and high utilization. In this study, a multifunctional fluorescent probe (E)-3-(4-(7-(4-(diphenylamino)phenyl)benzo[c] [1,2,5]thiadiazol-4-yl)phenyl)acrylic acid (TBAC) based on triphenylamine was designed and synthesized.
Results: The TBAC probe provided excellent aggregation-induced emission (AIE) performance and could be used as a fluorescent ink for printing.
Cardiovasc Eng Technol
January 2025
Institute for Medical Engineering and Science, Massachusetts Institute of Technology, MA, Cambridge, USA.
Purpose: Atrial fibrillation (AF) is the most common chronic cardiac arrhythmia that increases the risk of stroke, primarily due to thrombus formation in the left atrial appendage (LAA). Left atrial appendage occlusion (LAAO) devices offer an alternative to oral anticoagulation for stroke prevention. However, the complex and variable anatomy of the LAA presents significant challenges to device design and deployment.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
This paper presents, for the first time, a rotary actuator functionalized by an inclined disc rotor that serves as a distal optical scanner for endoscopic probes, enabling side-viewing endoscopy in luminal organs using different imaging/analytic modalities such as optical coherence tomography and Raman spectroscopy. This scanner uses a magnetic rotor designed to have a mirror surface on its backside, being electromagnetically driven to roll around the cone-shaped hollow base to create a motion just like a precessing coin. An optical probing beam directed from the probe's optic fiber is passed through the hollow cone to be incident and bent on the back mirror of the rotating inclined rotor, circulating the probing beam around the scanner for full 360° sideway imaging.
View Article and Find Full Text PDFSmall Methods
January 2025
Forschungszentrum Juelich GmbH, Institute of Energy Technologies, IET-4, Electrochemical Process Engineering, 52425, Juelich, Germany.
Understanding the sheet resistance of porous electrodes is essential for improving the performance of polymer electrolyte membrane (PEM) water electrolyzers and related technologies. Despite its importance, existing methods often fail to provide reliable and comprehensive data, especially for porous materials with complex morphologies and non-uniform thicknesses. This study introduces a robust and straightforward method for determining the sheet resistance of porous electrodes using a novel probe concept based on industrial printed circuit board (PCB) technology.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States.
Wearable sensors are increasingly being used as biosensors for health monitoring. Current wearable devices are large, heavy, invasive, skin irritants, or not continuous. Miniaturization was chosen to address these issues, using a femtosecond laser-conversion technique to fabricate miniaturized laser-induced graphene (LIG) sensor arrays on and encapsulated within a polyimide substrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!