A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydrodynamic resettability for a microfluidic particulate-based arraying system. | LitMetric

Precision hydrodynamic controls of microparticles (e.g., microbeads and cells) are critical to diverse lab-on-a-chip applications. Microfluidic particulate-based arraying techniques are widely used; however, achieving full microarray resettability without sacrificing trapping performance has remained a significant challenge. Here we present a single-layer hydrodynamic methodology for releasing high numbers of microparticles after a microfluidic arraying process. Experiments with suspended streptavidin-coated polystyrene microbeads (15 μm in diameter) revealed resetting efficiencies of 100%, with trapping and loading efficiencies of 99% and 99.8%, respectively. Experiments with suspended endothelial cells (13-17 μm in diameter) revealed trapping efficiencies of 65% and 93% corresponding to arraying of one cell or at least one cell per trap, respectively, with loading efficiencies of 78%. Full cell-based resettability was also observed, with the caveat that reagents that promote cellular detachment from the substrate were required. The presented resettable microarray could be readily integrated into bead-based or cell-based microfluidic platforms to enable: (i) the retrieval of high numbers of microparticles (e.g., for subsequent analyses and/or use in additional experiments), and (ii) microarray reusability.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2lc40704cDOI Listing

Publication Analysis

Top Keywords

microfluidic particulate-based
8
particulate-based arraying
8
high numbers
8
numbers microparticles
8
experiments suspended
8
μm diameter
8
diameter revealed
8
loading efficiencies
8
hydrodynamic resettability
4
microfluidic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!