The authors present the application of graphics processing unit (GPU) programming for real-time three-dimensional (3-D) Fourier domain optical coherence tomography (FdOCT) imaging with implementation of flow visualization algorithms. One of the limitations of FdOCT is data processing time, which is generally longer than data acquisition time. Utilizing additional algorithms, such as Doppler analysis, further increases computation time. The general purpose computing on GPU (GPGPU) has been used successfully for structural OCT imaging, but real-time 3-D imaging of flows has so far not been presented. We have developed software for structural and Doppler OCT processing capable of visualization of two-dimensional (2-D) data (2000 A-scans, 2048 pixels per spectrum) with an image refresh rate higher than 120 Hz. The 3-D imaging of 100×100 A-scans data is performed at a rate of about 9 volumes per second. We describe the software architecture, organization of threads, and optimization. Screen shots recorded during real-time imaging of a flow phantom and the human eye are presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1117/1.JBO.17.10.100502 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!