The importance of anaerobic oxidation of methane (AOM) as a methane sink in freshwater systems is largely unexplored, particularly in peat ecosystems. Nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and reported to be catalyzed by the bacterium "Candidatus Methylomirabilis oxyfera," which is affiliated with the NC10 phylum. So far, several "Ca. Methylomirabilis oxyfera" enrichment cultures have been obtained using a limited number of freshwater sediments or wastewater treatment sludge as the inoculum. In this study, using stable isotope measurements and porewater profiles, we investigated the potential of n-damo in a minerotrophic peatland in the south of the Netherlands that is infiltrated by nitrate-rich ground water. Methane and nitrate profiles suggested that all methane produced was oxidized before reaching the oxic layer, and NC10 bacteria could be active in the transition zone where countergradients of methane and nitrate occur. Quantitative PCR showed high NC10 bacterial cell numbers at this methane-nitrate transition zone. This soil section was used to enrich the prevalent NC10 bacteria in a continuous culture supplied with methane and nitrite at an in situ pH of 6.2. An enrichment of nitrite-reducing methanotrophic NC10 bacteria was successfully obtained. Phylogenetic analysis of retrieved 16S rRNA and pmoA genes showed that the enriched bacteria were very similar to the ones found in situ and constituted a new branch of NC10 bacteria with an identity of less than 96 and 90% to the 16S rRNA and pmoA genes of "Ca. Methylomirabilis oxyfera," respectively. The results of this study expand our knowledge of the diversity and distribution of NC10 bacteria in the environment and highlight their potential contribution to nitrogen and methane cycles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3502929PMC
http://dx.doi.org/10.1128/AEM.02102-12DOI Listing

Publication Analysis

Top Keywords

nc10 bacteria
20
methylomirabilis oxyfera"
12
methane
9
minerotrophic peatland
8
"ca methylomirabilis
8
methane nitrate
8
transition zone
8
16s rrna
8
rrna pmoa
8
pmoa genes
8

Similar Publications

Methane-oxidizing bacteria (MOB) is a group of planktonic microorganisms that use methane as their primary source of cellular energy. For tropical lakes in monsoon Asia, there is currently a knowledge gap on MOB community diversity and the factors influencing their abundance. Herewith, we present a preliminary assessment of the MOB communities in three maar lakes in tropical monsoon Asia using Catalyzed Reporter Deposition, Fluorescence In-Situ Hybridization (CARD-FISH), 16S rRNA amplicon sequencing, and pmoA gene sequencing.

View Article and Find Full Text PDF

Anaerobic oxidation of methane driven by different electron acceptors: A review.

Sci Total Environ

October 2024

Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China. Electronic address:

Methane, the most significant reduced form of carbon on Earth, acts as a crucial fuel and greenhouse gas. Globally, microbial methane sinks encompass both aerobic oxidation of methane (AeOM), conducted by oxygen-utilizing methanotrophs, and anaerobic oxidation of methane (AOM), performed by anaerobic methanotrophs employing various alternative electron acceptors. These electron acceptors involved in AOM include sulfate, nitrate/nitrite, humic substances, and diverse metal oxides.

View Article and Find Full Text PDF

Simultaneous methane mitigation and nitrogen removal by denitrifying anaerobic methane oxidation in lake sediments.

Sci Total Environ

July 2024

Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China. Electronic address:

Methane (CH) is a potent greenhouse gas, with lake ecosystems significantly contributing to its global emissions. Denitrifying anaerobic methane oxidation (DAMO) process, mediated by NC10 bacteria and ANME-2d archaea, links global carbon and nitrogen cycles. However, their potential roles in mitigating methane emissions and removing nitrogen from lake ecosystems remain unclear.

View Article and Find Full Text PDF

Methane mitigation via the nitrite-DAMO process induced by nitrate dosing in sewers.

Water Res

June 2024

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China. Electronic address:

Nitrate or nitrite-dependent anaerobic methane oxidation (n-DAMO) is a microbial process that links carbon and nitrogen cycles as a methane sink in many natural environments. This study demonstrates, for the first time, that the nitrite-dependent anaerobic methane oxidation (nitrite-DAMO) process can be stimulated in sewer systems under continuous nitrate dosing for sulfide control. In a laboratory sewer system, continuous nitrate dosing not only achieved complete sulfide removal, but also significantly decreased dissolved methane concentration by ∼50 %.

View Article and Find Full Text PDF

Evolutionary ecology of denitrifying methanotrophic NC10 bacteria in the deep-sea biosphere.

Mol Ecol

June 2024

CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.

The NC10 phylum links anaerobic methane oxidation to nitrite denitrification through a unique O-producing intra-aerobic methanotrophic pathway. Although numerous amplicon-based studies revealed the distribution of this phylum, comprehensive genomic insights and niche characterization in deep-sea environments were still largely unknown. In this study, we extensively surveyed the NC10 bacteria across diverse deep-sea environments, including waters, sediments, cold seeps, biofilms, rocky substrates, and subseafloor aquifers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!