CD8+ cytotoxic T cells are critical for viral clearance from the lungs upon influenza virus infection. The contribution of antigen cross-presentation by DCs to the induction of anti-viral cytotoxic T cells remains controversial. Here, we used a recombinant influenza virus expressing a nonstructural 1-GFP (NS1-GFP) reporter gene to visualize the route of antigen presentation by lung DCs upon viral infection in mice. We found that lung CD103+ DCs were the only subset of cells that carried intact GFP protein to the draining LNs. Strikingly, lung migratory CD103+ DCs were not productively infected by influenza virus and thus were able to induce virus-specific CD8+ T cells through the cross-presentation of antigens from virally infected cells. We also observed that CD103+ DC resistance to infection correlates with an increased anti-viral state in these cells that is dependent on the expression of type I IFN receptor. These results show that efficient cross-priming by migratory lung DCs is coupled to the acquisition of an anti-viral status, which is dependent on the type I IFN signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3484433 | PMC |
http://dx.doi.org/10.1172/JCI60659 | DOI Listing |
Nat Commun
January 2025
National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
The Eurasian avian-like (EA) H1N1 swine influenza virus (SIV) possesses the capacity to instigate the next influenza pandemic, owing to its heightened affinity for the human-type α-2,6 sialic acid (SA) receptor. Nevertheless, the molecular mechanisms underlying the switch in receptor binding preferences of EA H1N1 SIV remain elusive. In this study, we conduct a comprehensive genome-wide CRISPR/Cas9 knockout screen utilizing EA H1N1 SIV in porcine kidney cells.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.
The ongoing circulation of influenza A H5N1 in the United States has raised concerns of a pandemic caused by highly pathogenic avian influenza. Although the United States has stockpiled and is prepared to produce millions of vaccine doses to address an H5N1 pandemic, currently circulating H5N1 viruses contain multiple mutations within the immunodominant head domain of hemagglutinin (HA) compared to the antigens used in stockpiled vaccines. It is unclear if these stockpiled vaccines will need to be updated to match the contemporary H5N1 strains.
View Article and Find Full Text PDFJ R Soc Interface
January 2025
Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
Influenza forecasts could aid public health response as shown for temperate regions, but such efforts are more challenging in the tropics and subtropics due to more irregular influenza activities. Here, we built six forecast approaches for influenza in the (sub)tropics, with six model forms designed to model seasonal infection risk (i.e.
View Article and Find Full Text PDFPrev Vet Med
January 2025
Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 8, Frederiksberg C 1870, Denmark.
Highly pathogenic avian influenza (HPAI) is a major concern in terms of animal and human health. Between October 2020 and September 2023, there were 36 HPAI outbreaks detected in poultry and other captive birds in Denmark. However, it is often not possible to determine the exact route of introduction.
View Article and Find Full Text PDFTrends Microbiol
January 2025
Center for Immunology, Fox Chase Cancer Center, Philadelphia, PA, USA. Electronic address:
Influenza A virus (IAV) infections can cause life-threatening illness in humans. The severity of disease is directly linked to virus replication in the alveoli of the lower respiratory tract. In particular, the lytic death of infected alveolar epithelial cells (AECs) is a major driver of influenza severity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!