Carbon monoxide (CO) is an endogenous gaseous transmitter that exerts antiproliferative effects in many cell types, but effects of CO on the translational machinery are not described. We examined the effects of the carbon monoxide releasing molecule-2 (CORM-2) on critical steps in translational signaling and global protein synthesis in pancreatic stellate cells (PSCs), the most prominent collagen-producing cells in the pancreas, whose activation is associated with pancreatic fibrosis. PSCs were isolated from rat pancreatic tissue and incubated with CORM-2. CORM-2 prevented the decrease in the phosphorylation of eukaryotic elongation factor 2 (eEF2) caused by serum. By contrast, the activation dependent phosphorylation of initiation factor 4E-binding protein 1 (4E-BP1) was inhibited by CORM-2 treatment. The phosphorylation of eukaryotic initiation factor 2α (eIF2α) and eukaryotic initiation factor 4E (eIF4E) were not affected by CORM-2 treatment. In consequence, CORM-2 mediated eEF2 phosphorylation and inactivation of 4E-BP1 suppressed global protein synthesis. These observations were associated with inhibition of phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (PI3K-Akt-mTOR) signaling and increased intracellular calcium and cAMP levels. The CORM-2 mediated inhibition of protein synthesis resulted in downregulation of cyclin D1 and cyclin E expression, a subsequent decline in the phosphorylation of the retinoblastoma tumor suppressor protein (Rb) and cell growth arrest at the G(0)/G(1) phase checkpoint of the cell cycle. Our results suggest the therapeutic application of CO releasing molecules such as CORM-2 for the treatment of fibrosis, inflammation, cancer, or other pathologic states associated with excessive protein synthesis or hyperproliferation. However, prolonged exogenous application of CO might also have negative effects on cellular protein homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biocel.2012.09.020 | DOI Listing |
J Biol Eng
January 2025
Department of Aquatic Animals and Diseases, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye.
Background: Synthesis of organic@inorganic hNFs is achieved by the coordination of organic compounds containing amine, amide, and diol groups with bivalent metals. The use of bio-extracts containing these functional groups instead of expensive organic inputs such as DNA, enzymes, and protein creates advantages in terms of cost and applicability. In this study, the application potentials (antioxidant, antibacterial, anticancer, guaiacol, anionic, and cationic dye degradation) of hybrid (organic@inorganic) nanoflowers (hNFs) synthesized with Cu and snakeskin (SSS) were proposed.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China.
Background: Pancreatic cancer is a highly aggressive neoplasm characterized by poor diagnosis. Amino acids play a prominent role in the occurrence and progression of pancreatic cancer as essential building blocks for protein synthesis and key regulators of cellular metabolism. Understanding the interplay between pancreatic cancer and amino acid metabolism offers potential avenues for improving patient clinical outcomes.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China.
Background: Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms.
View Article and Find Full Text PDFJ Assist Reprod Genet
January 2025
Medical Genetics Laboratory, Shiraz Fertility Center, Shiraz, Iran.
Purpose: Preimplantation aneuploidy in humans is one of the primary causes of implantation failure and embryo miscarriage. This study was conducted to gain insight into gene expression changes that may result from aneuploidy in blastocysts through RNA-Seq analysis.
Methods: The surplus embryos of preimplantation genetic testing for aneuploidy (PGT-A) candidate couples with normal karyotype and maternal age < 38 were collected following identical ovarian stimulation protocol.
Sci Data
January 2025
Department of Chemistry-BMC, Uppsala University, SE-75123, Uppsala, Sweden.
The process of developing new drugs is arduous and costly, particularly for targets classified as "difficult-to-drug." Macrocycles show a particular ability to modulate difficult-to-drug targets, including protein-protein interactions, while still allowing oral administration. However, the determination of membrane permeability, critical for reaching intracellular targets and for oral bioavailability, is laborious and expensive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!