AI Article Synopsis

  • Baicalin, a flavonoid from Scutellaria baicalensis, has neuroprotective effects against delayed neuronal death after ischemia/reperfusion in gerbils.
  • The study examined how baicalin influences GABAergic signaling, heat shock protein 70 (HSP70), and mitogen-activated protein kinases (MAPKs) following ischemia.
  • Results showed that baicalin improved neurological function, reduced neuronal damage, and altered the expression of GABA receptors and MAPK pathways, indicating its potential mechanism for neuroprotection.

Article Abstract

Baicalin, a flavonoid compound isolated from the plant Scutellaria baicalensis Georgi, is known as a protective agent against delayed neuronal cell death after ischemia/reperfusion. To investigate the neuroprotective mechanism of baicalin, the present study was conducted to explore whether the alterations of GABAergic signaling, heat shock protein 70 (HSP70) and mitogen-activated protein kinases (MAPKs) were involved in its neuroprotection on gerbils global ischemia. The bilateral carotid arteries were occluded by 5 min and baicalin at the dose of 200 mg/kg was intraperitoneally injected into the gerbils immediately after cerebral ischemia. Seven days after reperfusion, neurological deficit was scored and changes in hippocampal neuronal cell death were assessed by Nissl staining as well as NeuN immunohistochemistry. The mRNA and protein expressions of GABAergic signal molecules (GABA(A)R α1, GABA(A)R γ2, KCC2 and NKCC1) were determined in ischemic hippocampus by real-time RT-PCR and Western blot, respectively. In addition, HSP70 and MAPKs cascades (ERK, JNK and p38) were also detected using western blot assay. Our results illustrated that baicalin treatment significantly facilitated neurological function, suppressed the ischemia-induced neuronal damage. Besides, administration of baicalin also caused a striking increase of GABA(A)R α1, GABA(A)R γ2 and KCC2 together with the decrease of NKCC1 at mRNA and protein levels in gerbils hippocampus following an ischemic insult. Furthermore, the protein expressions of HSP70 and phosphorylated ERK (p-ERK) were evidently augmented while the phosphorylated JNK (p-JNK) and phosphorylated p38 (p-p38) were strikingly diminished in ischemic gerbils with baicalin treatment. These findings suggest that baicalin activates GABAergic signaling, HSP70 and MAPKs cascades in global ischemia, which may be a mechanism underlying the baicalin's neuroprotection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2012.09.014DOI Listing

Publication Analysis

Top Keywords

gabaergic signaling
12
signaling hsp70
8
baicalin's neuroprotection
8
neuronal cell
8
cell death
8
global ischemia
8
mrna protein
8
protein expressions
8
gabaar α1
8
α1 gabaar
8

Similar Publications

Activation of the brain-penetrant beta3-adrenergic receptor (Adrb3) is implicated in the treatment of depressive disorders. Enhancing GABAergic inputs from interneurons onto pyramidal cells of prefrontal cortex (PFC) represents a strategy for antidepressant therapies. Here, we probed the effects of the activation of Adrb3 on GABAergic transmission onto pyramidal neurons in the PFC using in vitro electrophysiology.

View Article and Find Full Text PDF

Chronic stress profoundly affects the structure and function of the prefrontal cortex (PFC), a brain region critical for executive functions and emotional regulation. This review synthesizes current knowledge on stress-induced PFC plasticity, encompassing structural, functional, and molecular changes. We examine how chronic stress leads to dendritic atrophy, spine loss, and alterations in neuronal connectivity within the PFC, particularly affecting the medial PFC.

View Article and Find Full Text PDF

Maintenance of neural progenitors requires Notch signaling in vertebrate development. Previous study has shown that Jagged2-mediated Notch signaling maintains proliferating neural progenitors in the ventral spinal cord. However, components for Jagged-mediated signaling remain poorly defined during late neurogenesis.

View Article and Find Full Text PDF

Bipolar disorder is a leading contributor to the global burden of disease. Despite high heritability (60-80%), the majority of the underlying genetic determinants remain unknown. We analysed data from participants of European, East Asian, African American and Latino ancestries (n = 158,036 cases with bipolar disorder, 2.

View Article and Find Full Text PDF

Impacts of hnRNP A1 Splicing Inhibition on the Brain Remyelination Proteome.

J Neurochem

January 2025

Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.

Oligodendrocytes, the myelinating cells in the central nervous system, are implicated in several neurological disorders marked by dysfunctional RNA-binding proteins (RBPs). The present study aimed at investigating the role of hnRNP A1 in the proteome of the corpus callosum, prefrontal cortex, and hippocampus of a murine cuprizone-induced demyelination model. Right after the cuprizone insult, we administered an hnRNP A1 splicing activity inhibitor and analyzed its impact on brain remyelination by nanoESI-LC-MS/MS label-free proteomic analysis to assess the biological processes affected in these brain regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!