Global profiling of protein kinase activities in cancer cells by mass spectrometry.

J Proteomics

Analytical Signaling Group, Centre for Cell Signaling, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.

Published: December 2012

Protein kinases have important functions in the control of cell biology and are implicated in several diseases including cancer. Here we describe a technique to quantify protein kinase activity in a global fashion and without preconception of the kinases that may be active in the cell or tissue under investigation. In Global Kinase Activity Profiling (GKAP), protein kinases present in experimental cell lysates phosphorylate endogenous substrates, also present in the lysate, under defined conditions. Reaction products are then quantified using standard phosphoproteomic techniques based on LC-MS/MS. The technique thus allows measuring the combined activities of kinases targeting common substrates, which are detected as phosphopeptides by LC-MS/MS. Almost four hundred kinase reactions could be quantified in a human epithelial cell line, 177 of which increased in response to EGF treatment while others decreased in cells exposed to the kinase inhibitors LY294002 or U0126. GKAP also detected marked differences in the patterns of kinase activities in human leukemia cell lines with different sensitivities to kinase inhibitors. These results reveal that GKAP detects and quantifies hundreds of kinase activities modulated by growth factors or pharmacological inhibitors, and that these activities correlate with the phenotypes of cancer cells and their responses to kinase inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2012.09.029DOI Listing

Publication Analysis

Top Keywords

kinase activities
12
kinase inhibitors
12
kinase
9
protein kinase
8
cancer cells
8
protein kinases
8
kinase activity
8
activities
5
cell
5
global profiling
4

Similar Publications

Purpose: MAP2K1/MEK1 mutations are potentially actionable drivers in cancer. MAP2K1 mutations have been functionally classified into three groups according to their dependency on upstream RAS/RAF signaling. However, the clinical efficacy of mitogen-activated protein kinase (MAPK) pathway inhibitors (MAPKi) for MAP2K1-mutant tumors is not well defined.

View Article and Find Full Text PDF

In thrombosis and hemostasis, the formation of a platelet-fibrin thrombus or clot is a highly controlled process that varies, depending on the pathological context. Major signaling pathways in platelets are well established. However, studies with genetically modified mice have identified the contribution of hundreds of additional platelet-expressed proteins in arterial thrombus formation and bleeding.

View Article and Find Full Text PDF

The intracellular protozoan Toxoplasma gondii manipulates host cell signaling to avoid targeting by autophagosomes and lysosomal degradation. Epidermal Growth Factor Receptor (EGFR) is a mediator of this survival strategy. However, EGFR expression is limited in the brain and retina, organs affected in toxoplasmosis.

View Article and Find Full Text PDF

This study presents T-1-NBAB, a new compound derived from the natural xanthine alkaloid theobromine, aimed at inhibiting VEGFR-2, a crucial protein in angiogenesis. T-1-NBAB's potential to interacts with and inhibit the VEGFR-2 was indicated using in silico techniques like molecular docking, MD simulations, MM-GBSA, PLIP, essential dynamics, and bi-dimensional projection experiments. DFT experiments was utilized also to study the structural and electrostatic properties of T-1-NBAB.

View Article and Find Full Text PDF

Purpose: Rose Bengal Photodynamic Therapy (RB-PDT) offers dual therapeutic benefits by enhancing corneal stiffness and providing antibacterial activity, presenting significant potential for patients with keratoconus complicated by keratitis. Our purpose was to assess the effect of rose bengal photodynamic therapy (RB-PDT) on the expression of pro-inflammatory cytokines and chemokines, as well as on extracellular matrix (ECM)-related molecules, in lipopolysaccharide (LPS)-induced inflammation of keratoconus human corneal fibroblasts (KC-HCFs). Additionally, the involvement of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways which are downstream of the Toll-like receptor 4 (TLR4) pathway were examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!