A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of mobile phase composition on the performance of porous polymeric monoliths in the elution of small molecules. | LitMetric

Impact of mobile phase composition on the performance of porous polymeric monoliths in the elution of small molecules.

J Chromatogr A

Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, A-4040 Linz, Austria.

Published: November 2012

The influence of mobile phase solvent composition and consequently retention factor on the chromatographic performance for a set of small molecules was studied using a commercially available poly(styrene-co-divinyl benzene) analytical scale porous polymeric monolithic column as an example. Chromatographic elution performance was studied across retention factors from close to 0 up to 100 realized for a set of structurally similar small molecules in a binary reversed-phase solvent environment of acetonitrile and water. By altering the mobile phase composition from volume fractions of acetonitrile of just 10% (v/v) to only acetonitrile it was systematically shown that gel porosity of the monolithic column plays a dominant role in modulating mass transport and the associated chromatographic efficiency in a consistent manner. Up to a sixfold difference in plate height was recorded for the most strongly retained hydrophobic solute (ethylbenzene) at a constant, low flow velocity simply by varying the amount of acetonitrile in the mobile phase. Plate height curves recorded for the set of solutes that comprise benzene, toluene, ethylbenzene as well as phenol and benzyl alcohol further demonstrate the importance of functional group content of the solute and the modulated porous gel structure on mass transport. These results highlight some important practical considerations for characterizing the chromatographic properties of any polymeric monolithic column. First, it is imperative that any chromatographic performance characterization using plate height data explicitly considers the influence of mobile phase composition, retention factor, molecular size and functional groups of the probe solute. Second, as the physicochemical conditions of the material are directly reflected in the gel porosity, a range of different mobile phase compositions, retention factors and probe-specific effects must be investigated to yield a fair appraisal of the chromatographic performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2012.09.033DOI Listing

Publication Analysis

Top Keywords

mobile phase
24
phase composition
12
small molecules
12
chromatographic performance
12
monolithic column
12
plate height
12
porous polymeric
8
influence mobile
8
retention factor
8
polymeric monolithic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!