Chemotherapy disrupts learning, neurogenesis and theta activity in the adult brain.

Eur J Neurosci

Department of Psychology, University of Jyvaskyla, PO Box 35, 40014 Jyvaskyla, Finland.

Published: December 2012

Chemotherapy, especially if prolonged, disrupts attention, working memory and speed of processing in humans. Most cancer drugs that cross the blood-brain barrier also decrease adult neurogenesis. Because new neurons are generated in the hippocampus, this decrease may contribute to the deficits in working memory and related thought processes. The neurophysiological mechanisms that underlie these deficits are generally unknown. A possible mediator is hippocampal oscillatory activity within the theta range (3-12 Hz). Theta activity predicts and promotes efficient learning in healthy animals and humans. Here, we hypothesised that chemotherapy disrupts learning via decreases in hippocampal adult neurogenesis and theta activity. Temozolomide was administered to adult male Sprague-Dawley rats in a cyclic manner for several weeks. Treatment was followed by training with different types of eyeblink classical conditioning, a form of associative learning. Chemotherapy reduced both neurogenesis and endogenous theta activity, as well as disrupted learning and related theta-band responses to the conditioned stimulus. The detrimental effects of temozolomide only occurred after several weeks of treatment, and only on a task that requires the association of events across a temporal gap and not during training with temporally overlapping stimuli. Chemotherapy did not disrupt the memory for previously learned associations, a memory independent of (new neurons in) the hippocampus. In conclusion, prolonged systemic chemotherapy is associated with a decrease in hippocampal adult neurogenesis and theta activity that may explain the selective deficits in processes of learning that describe the 'chemobrain'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3523213PMC
http://dx.doi.org/10.1111/ejn.12007DOI Listing

Publication Analysis

Top Keywords

theta activity
20
neurogenesis theta
12
adult neurogenesis
12
chemotherapy disrupts
8
disrupts learning
8
working memory
8
hippocampal adult
8
weeks treatment
8
chemotherapy
6
learning
6

Similar Publications

Evaluation of mechanisms of action of EEG neurofeedback (EEG-nf) using simultaneous fMRI is highly desirable to ensure its effective application for clinical rehabilitation and therapy. Counterbalancing training runs with active neurofeedback and sham (neuro)feedback for each participant is a promising approach to demonstrate specificity of training effects to the active neurofeedback. We report the first study in which EEG-nf procedure is both evaluated using simultaneous fMRI and controlled via the counterbalanced active-sham study design.

View Article and Find Full Text PDF

Introduction: Multitasking during flights leads to a high mental workload, which is detrimental for maintaining task performance. Electroencephalography (EEG) power spectral analysis based on frequency-band oscillations and microstate analysis based on global brain network activation can be used to evaluate mental workload. This study explored the effects of a high mental workload during simulated flight multitasking on EEG frequency-band power and microstate parameters.

View Article and Find Full Text PDF

Bronchopulmonary dysplasia (BPD) is a chronic lung disease, with its own clinical, radiological and histopathological characteristics, which mainly affects premature newborns, resulting from a combination of factors that include immaturity, inflammation and lung injury, in addition to therapy with mechanical ventilation and exposure to high concentrations of oxygen. However, even with advances in care for critically ill newborns, BPD continues to be a challenge for the care team and family members. This has been identified as one of the most important causes of morbidity and mortality due to prematurity, and can have significant impacts on the quality of life of the affected patients.

View Article and Find Full Text PDF

Contralateral Neurovascular Coupling in Patients with Ischemic Stroke After Endovascular Thrombectomy.

Neurocrit Care

January 2025

Center for Data Science, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA.

Background: Neurovascular coupling (NVC) refers to the process of aligning cerebral blood flow with neuronal metabolic demand. This study explores the potential of contralateral NVC-linking neural electrical activity on the stroke side with cerebral blood flow velocity (CBFV) on the contralesional side-as a marker of physiological function of the brain. Our aim was to examine the association between contralateral NVC and neurological outcomes in patients with ischemic stroke following endovascular thrombectomy.

View Article and Find Full Text PDF

Quantitative electroencephalography (qEEG) data can facilitate the monitoring of treatment progress and the evaluation of therapeutic responses in patients with Major Depressive Disorder (MDD). This study aims to compare the qEEG data of MDD patients and healthy controls, both before and after treatment, to assess the effect of treatment response on neural activity. A total of 72 patients, aged 18-60, who had not used any psychopharmacological medication for at least two weeks, were included in the study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!