Purpose: Rotational IMRT has been adopted by many clinics for its promise to deliver treatments in a shorter amount of time than other conventional IMRT techniques. In this paper, the authors investigate whether RapidArc is more susceptible to delivery uncertainties than dynamic IMRT using fixed fields.
Methods: Dosimetric effects of delivery uncertainties in dose rate, gantry angle, and MLC leaf positions were evaluated by incorporating these uncertainties into RapidArc and sliding window IMRT (SW IMRT) treatment plans for five head-and-neck and five prostate cases. Dose distributions and dose-volume histograms of original and modified plans were recalculated and compared using Gamma analysis and dose indices of planned treatment volumes (PTV) and organs at risk (OAR). Results of Gamma analyses using passing criteria ranging from 1%-1 mm up to 5%-3 mm were reported.
Results: Systematic shifts in MLC leaf bank positions of SW-IMRT cases resulted in 2-4 times higher average percent differences than RapidArc cases. Uniformly distributed random variations of 2 mm for active MLC leaves had a negligible effect on all dose distributions. Sliding window cases were much more sensitive to systematic shifts in gantry angle. Dose rate variations during RapidArc must be much larger than typical machine tolerances to affect dose distributions significantly; dynamic IMRT is inherently not susceptible to such variations.
Conclusions: RapidArc deliveries were found to be more tolerant to variations in gantry position and MLC leaf position than SW IMRT. This may be attributed to the fact that the average segmental field size or MLC leaf opening is much larger for RapidArc. Clinically acceptable treatments may be delivered successfully using RapidArc despite large fluctuations in dose rate and gantry position.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3461049 | PMC |
http://dx.doi.org/10.1118/1.4749965 | DOI Listing |
Med Phys
January 2025
Department of Medical Physics, Nova Scotia Health, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada.
intra-arc binary collimation (iABC) is a novel treatment technique in which dynamic conformal arcs are periodically interrupted with binary collimation. It has demonstrated its utility through planning studies for the treatment of multiple metastases. However, the binary collimation approach is idealized in the planning system, while the treatment deliveries must adhere to the physical limitations of the mechanical systems involved [e.
View Article and Find Full Text PDFHealth Phys
January 2025
Department of Radiation Oncology, Medicine Faculty of Van Yüzüncü Yıl University, Van, Turkey.
Quality assurance practices performed before treatment are believed to identify various potential errors. In this study, 2-dimensional (2D) dosimetric results were analyzed by making some intentional mistakes in six different treatment plans. In this way, the detectability of errors was investigated.
View Article and Find Full Text PDFRep Pract Oncol Radiother
December 2024
Department of Radiation Oncology, Kagawa University Hospital, Kagawa, Japan.
Front Oncol
December 2024
Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul, Republic of Korea.
Purpose: This study presents novel quality assurance (QA) approach for volumetric modulated arc therapy (VMAT) that leverages frame-by-frame electronic portal imaging device (EPID) images integrated into Mobius3D for accurate three-dimensional dose calculations.
Methods: Sequential EPID images for VMAT plans were acquired every 0.4-second by iView system and processed through iterative deconvolution to mitigate blurring from photon scattering.
J Appl Clin Med Phys
December 2024
Department of Radiation Oncology, New York University Langone Medical Center, New York, New York, USA.
Purpose: To commission a beam model in ClearCalc (Radformation Inc.) for use as a secondary dose calculation algorithm and to implement its use into an adaptive workflow for an MR-linear accelerator.
Methods: A beam model was developed using commissioning data for an Elekta Unity MR-linear accelerator and entered into ClearCalc.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!