The present work demonstrates a genetic algorithm approach to optimizing the effective material parameters of an acoustic metamaterial. The target device is an acoustic gradient index (GRIN) lens in air, which ideally possesses a maximized index of refraction, minimized frequency dependence of the material properties, and minimized acoustic impedance mismatch. Applying this algorithm results in complex designs with certain common features, and effective material properties that are better than those present in previous designs. After modifying the optimized unit cell designs to make them suitable for fabrication, a two-dimensional lens was built and experimentally tested. Its performance was in good agreement with simulations. Overall, the optimization approach was able to improve the refractive index but at the cost of increased frequency dependence. The optimal solutions found by the algorithm provide a numerical description of how the material parameters compete with one another and thus describes the level of performance achievable in the GRIN lens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.4744942 | DOI Listing |
Nat Commun
January 2025
Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
Aberration layers (AL) often present significant energy transmission barriers in microwave engineering, electromagnetic waves, and medical ultrasound. However, achieving broadband ultrasonic focusing through aberration layers like the human skull using conventional materials such as metals and elastomers has proven challenging. In this study, we introduce an inverse phase encoding method employing tunable soft metalens to penetrate heterogeneous aberration layers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Mechanical and Aerospace Engineering, University at Buffalo (State University of New York), Buffalo, NY 14260-4400.
Decades after being replaced with digital platforms, analogue computing has experienced a surging interest following developments in metamaterials and intricate fabrication techniques. Specifically, wave-based analogue computers which impart spatial transformations on an incident wavefront, commensurate with a desired mathematical operation, have gained traction owing to their ability to directly encode the input in its unprocessed form, bypassing analogue-to-digital conversion. While promising, these systems are inherently limited to single-task configurations.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Xi'an Key Laboratory of Extreme Environment and Protection Technology, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Tunable perfect acoustic absorption at subwavelength thickness has been a prominent topic in scientific research and engineering applications. Although metamaterials such as labyrinthine metasurfaces and coiling-up-space metamaterials can achieve subwavelength low-frequency acoustic absorption, efficiently realizing tunable absorption under uniform and limited size conditions remains challenging. In this paper, we introduce a folded slit to enhance the micro-slit acoustic absorber, effectively improving its low-frequency acoustic absorption performance and successfully achieving a perfect acoustic absorption coefficient of 0.
View Article and Find Full Text PDFJ Acoust Soc Am
December 2024
Department of Mechanical Engineering, Rowan University, Glassboro, New Jersey 08028, USA.
Space-time modulation opens the door for unprecedented wave behavior control, such as nonreciprocal wave manipulation. Here is proposed a one-dimensional space-time modulated membrane system aiming to realize a kind of acoustic metamaterial with space-time modulated effective density. Three different approaches, namely, the effective medium method, transfer matrix method, and time-domain simulation, are applied to analyze the acoustic response of the system under a monochromatic incidence.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, China.
Second-order elastic topological insulators (SETIs) with tightly localized corner states present a promising avenue for manipulating elastic waves in lower dimensions. However, existing SETIs typically support corner states of only a single mode, either out-of-plane or in-plane. In this work, an on-chip SETI that simultaneously hosts both high-frequency out-of-plane and in-plane corner states at ≈0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!