Malaria tropica is a devastating infectious disease caused by Plasmodium falciparum. This parasite synthesizes vitamin B6 de novo via the PLP (pyridoxal 5'-phosphate) synthase enzymatic complex consisting of PfPdx1 and PfPdx2 proteins. Biosynthesis of PLP is largely performed by PfPdx1, ammonia provided by PfPdx2 subunits is condensed together with R5P (D-ribose 5-phosphate) and G3P (DL-glyceraldehyde 3-phosphate). PfPdx1 accommodates both the R5P and G3P substrates and intricately co-ordinates the reaction mechanism, which is composed of a series of imine bond formations, leading to the production of PLP. We demonstrate that E4P (D-erythrose 4-phosphate) inhibits PfPdx1 in a dose-dependent manner. We propose that the acyclic phospho-sugar E4P, with a C1 aldehyde group similar to acyclic R5P, could interfere with R5P imine bond formations in the PfPdx1 reaction mechanism. Molecular docking and subsequent screening identified the E4P hydrazide analogue 4PEHz (4-phospho-D-erythronhydrazide), which selectively inhibited PfPdx1 with an IC50 of 43 μM. PfPdx1 contained in the heteromeric PLP synthase complex was shown to be more sensitive to 4PEHz and was inhibited with an IC50 of 16 μM. Moreover, the compound had an IC50 value of 10 μM against cultured P. falciparum intraerythrocytic parasites. To analyse further the selectivity of 4PEHz, transgenic cell lines overexpressing PfPdx1 and PfPdx2 showed that additional copies of the protein complex conferred protection against 4PEHz, indicating that the PLP synthase is directly affected by 4PEHz in vivo. These PfPdx1 inhibitors represent novel lead scaffolds which are capable of targeting PLP biosynthesis, and we propose this as a viable strategy for the development of new therapeutics against malaria.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20120925DOI Listing

Publication Analysis

Top Keywords

plp synthase
12
synthase complex
8
plasmodium falciparum
8
pfpdx1
8
pfpdx1 pfpdx2
8
reaction mechanism
8
imine bond
8
bond formations
8
plp
7
4pehz
5

Similar Publications

Ethnopharmacological Relevance: The Bu Shen Yi Sui capsule (BSYS), a modified version of the classical Chinese medicine formula Liu Wei Di Huang pill, has demonstrated therapeutic efficacy in the treatment of multiple sclerosis (MS). Nevertheless, the precise mechanism through which BSYS facilitates remyelination remains to be elucidated.

Aim Of The Study: This research investigates the role and potential mechanisms of BSYS-modified exosomes (exos) derived from bone marrow mesenchymal stem cells (BMSCs) in promoting remyelination in a cuprizone (CPZ)-induced demyelination model in mice.

View Article and Find Full Text PDF

5-Aminolevulinate synthase (ALAS) is a PLP-dependent enzyme that catalyzes the production of 5-aminolevulinate from succinyl-CoA and glycine. Its ability to catalyze the essentially irreversible - bond formation has significant potential in chemoenzymatic synthesis of α-amino ketones. Native ALAS, unfortunately, is extremely substrate-selective, and this seriously limits its synthetic utility.

View Article and Find Full Text PDF

Molecular Basis for Cγ-N Bond Formation by PLP-Dependent Enzyme LolC.

Biochemistry

December 2024

Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, United States.

Pyridoxal 5'-phosphate (PLP)-dependent enzymes catalyze a diverse array of biochemical transformations, making them invaluable biocatalytic tools for the synthesis of complex bioactive compounds. Here, we report the biochemical characterization of LolC, a PLP-dependent γ-synthase involved in the biosynthesis of loline alkaloids. LolC catalyzes the formation of a Cγ-N bond between -acetyl--homoserine (OAH) and l-proline, generating a diamino diacid intermediate.

View Article and Find Full Text PDF

Structure and identification of the native PLP synthase complex from lysate.

mBio

November 2024

Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA.

Many protein-protein interactions behave differently in biochemically purified forms as compared to their states. As such, determining native protein structures may elucidate structural states previously unknown for even well-characterized proteins. Here, we apply the bottom-up structural proteomics method, , toward a model methanogenic archaeon.

View Article and Find Full Text PDF
Article Synopsis
  • - Polyketide synthases (PKSs) typically produce a variety of natural products but rarely include sulfur-containing compounds, leading to an investigation of thiocysteine lyase (SH) domains involved in biosynthesizing the leinamycin family, like LnmJ-SH and GnmT-SH.
  • - A detailed study was conducted using a 1.8 Å resolution crystal structure of GnmT-SH, alongside synthesized substrate mimics and various techniques such as bioinformatics and mutagenesis, to understand the acyl carrier protein (ACP)-tethered substrate interactions and specificity of the SH domains.
  • - The research highlights evolutionary modifications in protein structures that allow for the accommodation of larger ACP-t
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!