Hydrogenase proteins catalyze the reversible conversion of molecular hydrogen to protons and electrons. While many enzymatic states of the [NiFe] hydrogenase have been studied extensively, there are multiple catalytically relevant EPR-silent states that remain poorly characterized. Analysis of model compounds using new spectroscopic techniques can provide a framework for the study of these elusive states within the protein. We obtained optical absorption and resonance Raman (RR) spectra of (dppe)Ni(μ-pdt)Fe(CO)(3) and [(dppe)Ni(μ-pdt)(μ-H)Fe(CO)(3)][BF(4)], which are structural and functional model compounds for the EPR-silent Ni-SI and Ni-R states of the [NiFe] hydrogenase active site. The studies presented here use RR spectroscopy to probe vibrational modes of the active site, including metal-hydride stretching vibrations along with bridging ligand-metal and Fe-CO bending vibrations, with isotopic substitution used to identify key metal-hydride modes. The metal-hydride vibrations are essentially uncoupled and represent isolated, localized stretching modes; the iron-hydride vibration occurs at 1530 cm(-1), while the nickel-hydride vibration is observed at 945 cm(-1). The significant discrepancy between the metal-hydride vibrational frequencies reflects the slight asymmetry in the metal-hydride bond lengths. Additionally, time-dependent density functional theory (TD-DFT) calculations were carried out to obtain theoretical RR spectra of these compounds. On the basis of the detailed comparison of theory and experiment, the dominant electronic transitions and significant normal modes probed in the RR experiments were assigned; the primary transitions in the visible wavelengths represent metal-to-metal and metal-to-ligand charge transfer bands. Inherent properties of metal-hydride vibrational modes in resonance Raman spectra and DFT calculations are discussed together with the prospects of observing such vibrational modes in metal-hydride-containing proteins. Such a combined theoretical and experimental approach may be valuable for characterization of analogous redox states in the [NiFe] hydrogenases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic3017276DOI Listing

Publication Analysis

Top Keywords

vibrational modes
16
[nife] hydrogenase
12
model compounds
12
resonance raman
12
states [nife]
12
density functional
8
raman spectra
8
active site
8
metal-hydride vibrational
8
modes
7

Similar Publications

To analyze the motion laws of a magnetic and elastic coupling system under the influence of various factors, this paper proposes a magnetic coupling pendulum based on spring pieces and magnets-a magnetic-mechanical oscillator. By fixing spring pieces onto two non-magnetic bases and attaching magnets to their upper ends, which repel each other, the potential energy during oscillation is expanded using Fourier series. Subsequently, Lagrange equations are solved to study the effects of the first two terms of potential energy.

View Article and Find Full Text PDF

Emergent superconductivity driven by Van Hove singularity in a Janus MoPS monolayer.

Phys Chem Chem Phys

January 2025

School of Physics and Electronics, Hunan University, Changsha 410082, China.

Two-dimensional (2D) Janus structures with the breaking of out-of-plane mirror symmetry can induce many interesting physical phenomena, and have attracted widespread attention. Herein, we propose a MoPS monolayer with mirror asymmetry, identified by first-principles structural search calculations, which demonstrates high thermodynamic and dynamic stability. Our findings reveal that Mo 4d-orbitals dominate the metallicity, significantly enhancing the density of states near the Fermi level due to Van Hove singularities (VHSs), leading to the existence of phonon-mediated superconductivity.

View Article and Find Full Text PDF

A low-frequency broadband ring transducer driven by the flextensional structure.

J Acoust Soc Am

January 2025

National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China.

The flextensional transducer (FT) is a typical low-frequency transmitting transducer that is capable of high-power operation due to its capacity for displacement amplification. This article uses the structural configuration of the class IV FT as the basis for designing a ring transducer, which is a circular structure comprising a multitude of class IV flextensional structures as well as circular acoustic radiation structures. The flextensional structure drives the circular acoustic radiation structure, which in turn generates sound waves at low frequencies.

View Article and Find Full Text PDF

Borophene based quasi planar nanocluster for ethanol, isobutanol, and acetone sensing: A first principle study.

J Mol Graph Model

January 2025

Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran. Electronic address:

In this study, the need for efficient detection of volatile organic compounds (VOCs) in environmental monitoring, industrial safety, is addressed by investigating borophene-based B36 nanoclusters as gas sensors. Density functional theory (DFT) calculations were employed to examine the adsorption behavior of ethanol, isobutanol, and acetone on B surfaces, with a focus on vibrational modes, reactivity, and adsorption energies. It was found that acetone exhibits the strongest interaction with pristine B, indicating its potential for robust sensing applications.

View Article and Find Full Text PDF

Controlling vibrational modes and energy gap by creating van der Waals (vdW) heterostructures through strain engineering is a novel approach to tailor the vibrational and electronic properties of two-dimensional (2D) materials. Numerous theoretical and experimental studies have significantly contributed to analysing the properties of transition metal dichalcogenides (TMDs), known for their multifunctional applications. In this study, we investigate the strain and stacking dependent vibrational properties of WSe2/MoSe2 and MoSe2/WSe2/MoSe2 vdW heterostructures using first-principles based density functional theory calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!