The interaction of mesenchymal stem cells (MSCs) with endothelium in vivo is significant for regenerative processes in organisms. To design concepts for tissue engineering for bone regeneration based on this interaction, the osteogenic differentiation of human bone marrow-derived MSCs in a co-culture with human dermal microvascular endothelial cells (HDMECs) was studied. The experiments were focussed on the regulation of MSCs in a co-culture with HDMECs on different calcium phosphate scaffolds. Alkaline phosphatase (ALP) activity and mRNA expression of various osteogenic markers increased significantly when cells were co-cultured on materials with calcium phosphate scaffolds compared to tissue culture polystyrene or when MSCs were cultured alone. In addition, it was observed that the expression of osteopontin and osteocalcin was highly sensitive to the substrate for cell adhesion. Whereas these late osteogenic markers were down-regulated in co-cultures on polystyrene, they were up-regulated on calcium phosphate and moreover, were differentially expressed on the three calcium phosphate scaffolds tested. To enhance the osteogenic differentiation of MSCs in a co-culture, direct cell-cell interactions were required. Concerning molecular mechanisms in the interactions between both cell types, it was found that connexin 43 was expressed in contact sites and more apparently, endothelial cells grew over the MSCs, which facilitated direct cellular interactions mediated by various adhesion receptors. This study revealed significant findings for the design of implant materials suitable for regeneration of bone by stimulating the functional interaction of MSCs with endothelial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/term.1590DOI Listing

Publication Analysis

Top Keywords

calcium phosphate
20
endothelial cells
16
phosphate scaffolds
16
osteogenic differentiation
12
mscs co-culture
12
mesenchymal stem
8
stem cells
8
osteogenic markers
8
mscs
7
cells
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!