Coherent superposition of light waves has long been used in various fields of science, and recent advances in digital coherent detection and space-division multiplexing have enabled the coherent superposition of information-carrying optical signals to achieve better communication fidelity on amplified-spontaneous-noise limited communication links. However, fiber nonlinearity introduces highly correlated distortions on identical signals and diminishes the benefit of coherent superposition in nonlinear transmission regime. Here we experimentally demonstrate that through coordinated scrambling of signal constellations at the transmitter, together with appropriate unscrambling at the receiver, the full benefit of coherent superposition is retained in the nonlinear transmission regime of a space-diversity fiber link based on an innovatively engineered multi-core fiber. This scrambled coherent superposition may provide the flexibility of trading communication capacity for performance in future optical fiber networks, and may open new possibilities in high-performance and secure optical communications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.20.019088 | DOI Listing |
The controlled visible spatial modes and vortex beams with tunable properties are highly sought after in cutting-edge applications, such as optical communication. In this study, by utilizing a hybrid pumping scheme, we demonstrate an ultra-compact, 607 nm orbital Poincaré laser based on a diode-pumped Pr:YLF laser. The system can generate various structured modes, including Laguerre-Gaussian (LG), Hermite-Gaussian (HG), and Hermite-Laguerre-Gaussian (HLG), all of which are mapped onto a first-order orbital Poincaré sphere.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China.
The development of acid-stable water oxidation electrocatalysts is crucial for high-performance energy conversion devices. Different from traditional nanostructuring, here we employ an innovative microwave-mediated electron-phonon coupling technique to assemble specific Ru atomic patterns (instead of random Ru-particle depositions) on MnCrO surfaces (Ru-MnCrO) in RuCl solution because hydrated Ru-ion complexes can be uniformly activated to replace some Mn sites at nearby Cr-dopants through microwave-triggered energy coherent superposition with molecular rotations and collisions. This selective rearrangement in Ru-MnCrO with particular spin-differentiated polarizations can induce localized spin domain inversion from reversed to parallel direction, which makes Ru-MnCrO demonstrate a high current density of 1.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
We report nonadiabatic dynamics computations on CH initiated on a coherent superposition of the five lowest cationic states, employing the Quantum Ehrenfest method. In addition to the totally symmetric carbon-carbon double bond stretch and carbon-hydrogen stretches, we see that the three non-totally symmetric modes become stimulated; torsion and three different CH stretching patterns. Thus, a coherent superposition of states, of the type involved in an attochemistry experiment, leads to the stimulation of specific non-totally symmetric motions.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Renmin University of China, Beijing 100872, China.
Photosynthesis in nature begins with light harvesting. The special pigment-protein complex converts sunlight into electron excitation that is transmitted to the reaction center, which triggers charge separation. Evidence shows that quantum coherence between electron excited states is important in the excitation energy transfer process.
View Article and Find Full Text PDFNat Commun
December 2024
Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada.
Methods to prepare and characterize neutron helical waves carrying orbital angular momentum (OAM) were recently demonstrated at small-angle neutron scattering (SANS) facilities. These methods enable access to the neutron orbital degree of freedom which provides new avenues of exploration in fundamental science experiments as well as in material characterization applications. However, it remains a challenge to recover phase profiles from SANS measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!