The thalamus occupies a pivotal position within the corticobasal ganglia-cortical circuits. In Parkinson's disease (PD), the thalamus exhibits pathological neuronal discharge patterns, foremost increased bursting and oscillatory activity, which are thought to perturb the faithful transfer of basal ganglia impulse flow to the cortex. Analogous abnormal thalamic discharge patterns develop in animals with experimentally reduced thalamic noradrenaline; conversely, added to thalamic neuronal preparations, noradrenaline exhibits marked antioscillatory and antibursting activity. Our study is based on this experimentally established link between noradrenaline and the quality of thalamic neuronal discharges. We analyzed 14 thalamic nuclei from all functionally relevant territories of 9 patients with PD and 8 controls, and measured noradrenaline with high-performance liquid chromatography with electrochemical detection. In PD, noradrenaline was profoundly reduced in all nuclei of the motor (pallidonigral and cerebellar) thalamus (ventroanterior: -86%, P = .0011; ventrolateral oral: -87%, P = .0010; ventrolateral caudal: -89%, P = .0014): Also, marked noradrenaline losses, ranging from 68% to 91% of controls, were found in other thalamic territories, including associative, limbic and intralaminar regions; the primary sensory regions were only mildly affected. The marked noradrenergic deafferentiation of the thalamus discloses a strategically located noradrenergic component in the overall pathophysiology of PD, suggesting a role in the complex mechanisms involved with the genesis of the motor and non-motor symptoms. Our study thus significantly contributes to the knowledge of the extrastriatal nondopaminergic mechanisms of PD with direct relevance to treatment of this disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4533102 | PMC |
http://dx.doi.org/10.1002/mds.25109 | DOI Listing |
Cell Rep
January 2025
School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA. Electronic address:
Words represent a uniquely human information channel-humans use words to express thoughts and feelings and to assign emotional valence to experience. Work from model organisms suggests that valence assignments are carried out in part by the neuromodulators dopamine, serotonin, and norepinephrine. Here, we ask whether valence signaling by these neuromodulators extends to word semantics in humans by measuring sub-second neuromodulator dynamics in the thalamus (N = 13) and anterior cingulate cortex (N = 6) of individuals evaluating positive, negative, and neutrally valenced words.
View Article and Find Full Text PDFCells
November 2024
Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
Fibromyalgia (FM) is a chronic and debilitating condition characterized by diffuse pain, often associated with symptoms such as fatigue, cognitive disturbances, and mood disorders. Metformin, an oral hypoglycemic agent, has recently gained attention for its potential benefits beyond glucose regulation. It has shown promise in alleviating neuropathic and inflammatory pain, suggesting that it could offer a novel approach to managing chronic pain conditions like FM.
View Article and Find Full Text PDFAm J Transl Res
September 2024
Department of Pain, Beijing Jishuitan Hospital, Capital Medical University Beijing 100035, China.
Heliyon
October 2024
Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China.
J Headache Pain
September 2024
Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
Background: Migraine and insomnia are prevalent conditions that often co-occur, each exacerbating the other and substantially impacting the quality of life. The locus coeruleus (LC), a brainstem region responsible for norepinephrine synthesis, participates in pain modulation, sleep/wake cycles, and emotional regulation, rendering it a potential nexus in the comorbidity of migraine and insomnia. Disruptions in the LC-noradrenergic system have been hypothesized to contribute to the comorbidities of migraine and insomnia, although neuroimaging evidence in humans remains scarce.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!