Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We fabricated stochastic antireflective structures (ARS) and analyzed their stability against high power laser irradiation and high temperature annealing. For 8 ps pulse duration and 1030 nm wavelength we experimentally determined their laser induced damage threshold to 4.9 (±0.3) J/cm(2), which is nearly as high as bulk fused silica with 5.6 (±0.3) J/cm(2). A commercial layer stack reached 2.0 (±0.2) J/cm(2). An annealing process removed adsorbed organics, as shown by XPS measurements, and significantly increased the transmission of the ARS. Because of their monolithic build the ARS endure such high temperature treatments. For more sensitive samples an UV irradiation proved to be capable. It decreased the absorbed light and reinforced the transmission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.20.018348 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!