A polarized low-coherence interferometry demodulation algorithm by recovering the absolute phase of a selected monochromatic frequency.

Opt Express

College of Precision Instrument & Optoelectronics Engineering, Tianjin University, Key Laboratory of Optoelectronics Information Technology, Tianjin 300072,China.

Published: July 2012

AI Article Synopsis

  • A new demodulation algorithm has been developed for pressure sensing in optical fiber Fabry-Perot systems, focusing on recovering the absolute phase from a chosen monochromatic frequency.
  • The algorithm utilizes Fourier transform techniques to determine the relative phase and interference order, allowing for accurate phase recovery through a linear fit of unwrapped phase-frequency data.
  • Experimental results demonstrate that this method achieves a pressure measurement precision of 0.15 kPa, significantly outperforming existing phase slope-based algorithms by a factor of 13.

Article Abstract

A demodulation algorithm based on absolute phase recovery of a selected monochromatic frequency is proposed for optical fiber Fabry-Perot pressure sensing system. The algorithm uses Fourier transform to get the relative phase and intercept of the unwrapped phase-frequency linear fit curve to identify its interference-order, which are then used to recover the absolute phase. A simplified mathematical model of the polarized low-coherence interference fringes was established to illustrate the principle of the proposed algorithm. Phase unwrapping and the selection of monochromatic frequency were discussed in detail. Pressure measurement experiment was carried out to verify the effectiveness of the proposed algorithm. Results showed that the demodulation precision by our algorithm could reach up to 0.15kPa, which has been improved by 13 times comparing with phase slope based algorithm.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.20.018117DOI Listing

Publication Analysis

Top Keywords

absolute phase
12
monochromatic frequency
12
polarized low-coherence
8
demodulation algorithm
8
selected monochromatic
8
proposed algorithm
8
algorithm
7
phase
6
low-coherence interferometry
4
interferometry demodulation
4

Similar Publications

AAPM Truth-based CT (TrueCT) reconstruction grand challenge.

Med Phys

January 2025

Center for Virtual Imaging Trial, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University School of Medicine, Durham, North Carolina, USA.

Background: This Special Report summarizes the 2022, AAPM grand challenge on Truth-based CT image reconstruction.

Purpose: To provide an objective framework for evaluating CT reconstruction methods using virtual imaging resources consisting of a library of simulated CT projection images of a population of human models with various diseases.

Methods: Two hundred unique anthropomorphic, computational models were created with varied diseases consisting of 67 emphysema, 67 lung lesions, and 66 liver lesions.

View Article and Find Full Text PDF

Background And Aims: Body composition parameters associated with aerobic fitness, mirrored by maximal oxygen consumption (V̇Omax), have recently gained interest as indicators of physical efficiency in facioscapulohumeral dystrophy (FSHD). Bioimpedance analysis (BIA) allows a noninvasive and repeatable estimate of body composition but is based on the use of predictive equations which, if used in cohorts with different characteristics from those for which the equation was originally formulated, could give biased results. Instead, the phase angle (PhA), a BIA raw bioelectrical parameter reflecting body fluids distribution, could provide reliable data for such analysis.

View Article and Find Full Text PDF

Resistance training at fast velocities is suggested to be more effective for improving muscular strength and movement speed compared to slow, heavy training. This study aimed to examine the effects of a fast-velocity (FVRT) compared to a slow-velocity (SVRT) resistance training program on maximal strength, maximal movement speed, and load-velocity characteristics in older adults. Nineteen community-dwelling older adults were randomly assigned to either the FVRT or SVRT group and completed a twice weekly, progressive resistance training protocol for 8-weeks.

View Article and Find Full Text PDF

Introduction: Adaptive ChemoTherapy for Ovarian cancer (ACTOv) is a phase II, multicentre, randomised controlled trial, evaluating an adaptive therapy (AT) regimen with carboplatin in women with relapsed, platinum-sensitive high-grade serous or high-grade endometrioid cancer of the ovary, fallopian tube and peritoneum whose disease has progressed at least 6 months after day 1 of the last cycle of platinum-based chemotherapy. AT is a novel, evolutionarily informed approach to cancer treatment, which aims to exploit intratumoral competition between drug-sensitive and drug-resistant tumour subpopulations by modulating drug dose according to a patient's own response to the last round of treatment. ACTOv is the first clinical trial of AT in this disease setting.

View Article and Find Full Text PDF

Albendazole-ivermectin co-formulation for the treatment of Trichuris trichiura and other soil-transmitted helminths: a randomised phase 2/3 trial.

Lancet Infect Dis

January 2025

Barcelona Institute for Global Health, Barcelona, Spain; International Health Department, Hospital Clinic de Barcelona, Barcelona, Spain; Universitat de Barcelona, Barcelona, Spain. Electronic address:

Background: Treatments for soil-transmitted helminthiases face challenges, especially in addressing Trichuris trichiura. Combination regimens, particularly of ivermectin and albendazole, are promising. We aimed to assess the safety, efficacy, and palatability of a combination tablet for the treatment of T trichiura, hookworm, and Strongyloides stercoralis infections among school-aged children in Ethiopia, Kenya, and Mozambique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!