Acetaminophen (APAP) is a commonly used and effective analgesic and antipyretic agent. However, some patients encounter hepatotoxicity after repeated APAP dosing at therapeutic doses. In the present study, we focused on the nutritional state as one of the risk factors of APAP-induced chronic hepatotoxicity in humans and investigated the contribution of undernourishment to susceptibility to APAP-induced chronic hepatotoxicity using an animal model mimicking undernourished patients. Rats were divided into 2 groups: the ad libitum fed (ALF) and the restricted fed (RF) rats and were assigned to 3 groups (n = 8/group) for each feeding condition. The animals were given APAP at 0, 300 and 500mg/kg for 99 days under each feeding condition. Plasma and urinary glutathione-related metabolites and liver function parameters were measured during the dosing period and hepatic glutathione levels were measured at the end of the dosing period. In the APAP-treated ALF rats hepatic glutathione levels were increased and hepatic function parameters were not changed, but in the APAP-treated RF rats hepatic glutathione levels were decreased at 500mg/kg and hepatic function parameters were increased at 300 and 500mg/kg. Moreover the urinary endogenous metabolite profile after long-term treatment with APAP in the ALF and RF rats was similar to that in human non-responders and responders to APAP-induced chronic hepatotoxicity, respectively. In conclusion, the RF rats were more sensitive to APAP-induced chronic hepatotoxicity than the ALF rats and were considered to be a useful model to estimate the contribution of the nutritional state of patients to APAP-induced chronic hepatotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.2131/jts.37.911DOI Listing

Publication Analysis

Top Keywords

chronic hepatotoxicity
28
apap-induced chronic
20
function parameters
12
hepatic glutathione
12
glutathione levels
12
alf rats
12
acetaminophen-induced chronic
8
hepatotoxicity
8
restricted fed
8
rats
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!