A surface plasmon resonance spectrometer using a super-period metal nanohole array.

Opt Express

Department of Electrical and Computer Engineering, University of Alabama in Huntsville, Huntsville, AL 35899, USA.

Published: September 2012

We investigate the surface plasmon resonance in super-period nanohole arrays and demonstrate a surface plasmon resonance spectrometer using a super-period metal nanohole array device. Super-period nanohole arrays are patterned metal nanohole array gratings. In a super-period nanohole array, there is a small subwavelength nanohole period that supports local surface plasmon resonance, and also a large grating period that diffracts surface plasmon radiations to non-zeroth order diffractions. With the super-period metal nanohole array, surface plasmon resonance can be measured in the first order diffraction in addition to be traditionally measured in the zeroth order transmission. The resonance peak wavelength measured in the first order diffraction is slightly blue-shifted from the resonance wavelength measured in the zeroth order transmission.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.20.021318DOI Listing

Publication Analysis

Top Keywords

surface plasmon
24
plasmon resonance
20
nanohole array
20
metal nanohole
16
super-period metal
12
super-period nanohole
12
resonance spectrometer
8
spectrometer super-period
8
nanohole
8
nanohole arrays
8

Similar Publications

Chiral and Quantum Plasmonic Sensors: New Frontiers in Selective and Ultra-Sensitive Sensing.

Small

January 2025

Department of Chemistry, Dr. Vishwanath Karad MIT World Peace University, Survey No, 124, Paud Rd, Kothrud, Pune, Maharashtra, 411038, India.

Surface Plasmon Polaritons (SPPs) and Localized Surface Plasmon Resonances (LSPRs) are fundamental phenomena in plasmonics that enable the confinement of electromagnetic waves beyond the diffraction limit. This confinement results in a significant enhancement of the electric field, making this phenomenon particularly beneficial for sensitive detection applications. However, conventional plasmonic sensors face several challenges, notably their difficulty in distinguishing chiral molecules, which are vital in drug development.

View Article and Find Full Text PDF

A combination of femtosecond stimulated Raman scattering and surface-enhanced Raman scattering, termed surface-enhanced stimulated Raman scattering (SE-FSRS), was proposed to leverage both temporal precision and sensitivity for advanced molecular dynamics analysis. During the initial successful implementations of this approach, unexpected spectral distortions were observed, and several potential explanations were proposed. Further progress in this novel technique and its broader implementation requires a profound understanding of the factors influencing the shape of the registered spectra and the underlying mechanisms.

View Article and Find Full Text PDF

Sum-frequency generation (SFG) enables the coherent upconversion of electromagnetic signals and plays a significant role in mid-infrared vibrational spectroscopy for molecular analysis. Recent research indicates that plasmonic nanocavities, which confine light to extremely small volumes, can facilitate the detection of vibrational SFG signals from individual molecules by leveraging surface-enhanced Raman scattering combined with mid-infrared laser excitation. In this article, we compute the degree of second order coherence ( (0)) of the upconverted mid-infrared field under realistic parameters and accounting for the anharmonic potential that characterizes vibrational modes of individual molecules.

View Article and Find Full Text PDF

In this work, laponite (LAP) was used to develop the silver (Ag) based nanocomposite for improved anti-bacterial action and wound healing properties. The amphiphilic co-polymers such as PLGA polymer was embedded with the surface of LAP molecules and polyethyleneimine (PEI) through the interaction of hydrophobic binding and it was formed as LAP/PLA-PEG/PEI formulation through the coupling chemistry. The Ag nanoparticles was loaded into formulation to develop LAP/PLA-PEG/PEI/Ag nanocomposite and characterized by different analytical techniques.

View Article and Find Full Text PDF

The coupling between excitons in semiconductors or molecules and metal nanoparticles has been well-studied, primarily for nanoparticles in their ground electronic state. However, less attention has been given to exciton-nanoparticle interactions when the nanoparticle generates surface plasmons upon incident excitation. In this study, we explore the coupling and energy transfer dynamics between an exciton and the surface plasmon of a metal nanoparticle, forming a "plexciton".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!