Efficient holoscopy image reconstruction.

Opt Express

Thorlabs GmbH, Maria-Goeppert-Str. 1, 23562 Lubeck, Germany.

Published: September 2012

Holoscopy is a tomographic imaging technique that combines digital holography and Fourier-domain optical coherence tomography (OCT) to gain tomograms with diffraction limited resolution and uniform sensitivity over several Rayleigh lengths. The lateral image information is calculated from the spatial interference pattern formed by light scattered from the sample and a reference beam. The depth information is obtained from the spectral dependence of the recorded digital holograms. Numerous digital holograms are acquired at different wavelengths and then reconstructed for a common plane in the sample. Afterwards standard Fourier-domain OCT signal processing achieves depth discrimination. Here we describe and demonstrate an optimized data reconstruction algorithm for holoscopy which is related to the inverse scattering reconstruction of wavelength-scanned full-field optical coherence tomography data. Instead of calculating a regularized pseudoinverse of the forward operator, the recorded optical fields are propagated back into the sample volume. In one processing step the high frequency components of the scattering potential are reconstructed on a non-equidistant grid in three-dimensional spatial frequency space. A Fourier transform yields an OCT equivalent image of the object structure. In contrast to the original holoscopy reconstruction with backpropagation and Fourier transform with respect to the wavenumber, the required processing time does neither depend on the confocal parameter nor on the depth of the volume. For an imaging NA of 0.14, the processing time was decreased by a factor of 15, at higher NA the gain in reconstruction speed may reach two orders of magnitude.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.20.021247DOI Listing

Publication Analysis

Top Keywords

optical coherence
8
coherence tomography
8
digital holograms
8
fourier transform
8
processing time
8
reconstruction
5
efficient holoscopy
4
holoscopy image
4
image reconstruction
4
reconstruction holoscopy
4

Similar Publications

Lens tension is essential for accommodative vision but remains challenging to measure with precision. Here, we present an optical coherence elastography (OCE) technique that quantifies both the tension and elastic modulus of lens tissue and capsule. This method derives mechanical parameters from surface wave dispersion across a critical frequency range of 1-30 kHz.

View Article and Find Full Text PDF

Neurodegeneration in glaucoma patients is clinically identified through longitudinal assessment of structure-function changes, including intraocular pressure, cup-to-disc ratios from fundus images, and optical coherence tomography imaging of the retinal nerve fiber layer. Use of human post-mortem ocular tissue for basic research is rising in the glaucoma field, yet there are challenges in assessing disease stage and severity, since tissue donations with informed consent are often unaccompanied by detailed pre-mortem clinical information. Further, the interpretation of disease severity based solely on anatomical and morphological assessments by histology can be affected by differences in death-to-preservation time and tissue processing.

View Article and Find Full Text PDF

Background: This case report describes a rare case of Coats disease in adult female patient with preserved vision after intravitreal Aflibercept injection and laser photocoagulation.

Case Presentation: A female patient of Asian Palestinian descent, aged 20, exhibited a progressive and painless deterioration in the vision of her left eye over a period of two weeks. She exhibited no additional ocular symptoms.

View Article and Find Full Text PDF

Brain-resident macrophages, microglia, have been proposed to have an active role in synaptic refinement and maturation, influencing plasticity and circuit-level connectivity. Here we show that several neurodevelopmental processes previously attributed to microglia can proceed without them. Using a genetically modified mouse that lacks microglia (Csf1r), we find that intrinsic properties, synapse number and synaptic maturation are largely normal in the hippocampal CA1 region and somatosensory cortex at stages where microglia have been implicated.

View Article and Find Full Text PDF

Objective: To investigate the long-term impact of half-fluence photodynamic therapy (PDT) on chorioretinal architecture in chronic central serous chorioretinopathy (cCSCR) through novel choroidal vascularity index (CVI) versus previously established subfoveal choroidal thickness (SFCT).

Methods: This post-hoc analysis included prospectively collected swept-source optical coherence tomography (SS-OCT) images of a total of 29 cCSCR and fellow eyes (FE), acquired before, one and 12 months after PDT. CVI, total choroidal area (TCA), luminal area (LA) and stromal area (SA) were calculated using validated binarization technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!