Ammonia detection is highly relevant for combustion in boilers and furnaces since NH3 is able to suppress nitric oxide levels by catalytic as well as non-catalytic reduction. The mixing of ammonia with flue gases is an important parameter to obtain efficient non-catalytic reduction. In this paper picosecond DIAL was used for range-resolved, single ended, NH3 detection, utilizing a tunable picosecond laser source. The absorption spectrum of the A(ν2 = 1) ← X(ν2 = 0) band was recorded and 212.2 and 214.5 nm was selected as the on- and off-resonance wavelength, respectively. One-dimensional concentration profiles with various NH3 concentration distributions are presented. The detection limit was found to be 40 ppm with a spatial resolution of 16 cm.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.20.020688DOI Listing

Publication Analysis

Top Keywords

ammonia detection
8
non-catalytic reduction
8
highly range-resolved
4
range-resolved ammonia
4
detection
4
detection near-field
4
near-field picosecond
4
picosecond differential
4
differential absorption
4
absorption lidar
4

Similar Publications

Objective: Congenital heart disease affects 1% of US births, with many babies requiring major cardiothoracic surgery under cardiopulmonary bypass (CPB), exposing the more critical patients to neurodevelopmental impairment. Optimal surgical parameters to minimize neuronal injury are unknown. We used H MRS and blood ammonia assays in a neonatal pig model of CPB to compare two approaches, complete circulatory arrest (CA) versus antegrade cerebral perfusion (ACP).

View Article and Find Full Text PDF

In this study, square-star-shaped leaf-like BiVO nanomaterials were successfully synthesized using a conventional hydrothermal method. The microstructure, elemental composition, and gas-sensing performance of the materials were thoroughly investigated. Morphological analysis revealed that BiVO prepared at different reaction temperatures exhibited square-star-shaped leaf-like structures, with the most regular and dense structures formed at 150 °C, exhibiting a large specific surface area of 2.

View Article and Find Full Text PDF

A Microfluidic Paper-Based Device for Monitoring Urease Activity in Saliva.

Biosensors (Basel)

January 2025

CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.

Chronic Kidney Disease (CKD) is a disorder that affects over 10% of the global population, and that would benefit from innovative methodologies that would provide early detection. Since it has been reported that there are high levels of urease in CKD patients' saliva, this sample is a promising non-invasive alternative to blood for CKD detection and monitoring. This work introduces a novel 3D µPAD for quantifying urease activity in saliva in a range of 0.

View Article and Find Full Text PDF

An ammonia-responsive aerogel-type colorimetric sensor for non-destructive monitoring of shrimp freshness.

Food Res Int

February 2025

Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom. Electronic address:

The colorimetric sensor for volatile amines (VA) detection can realize non-destructive monitoring of shrimp quality. However, its sensing performance still needs to be improved. In this study, we proposed an aerogel-type colorimetric sensor to improve VA sensing performance and realize early detection of shrimp spoilage.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are a widely used class of synthetic chemicals that pose a significant global environmental and health threat due to their persistent and bioaccumulation toxicity caused by strong C-F bonds in their structures. PFAS usually exist in trace concentrations in environmental water bodies, which poses great challenges for environmental analysis. In this study, environmentally friendly cellulose was modified with polyaniline through in situ oxidative polymerization, and used as the filter paper for solid-phase extracting 23 PFAS in water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!