Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles.

Opt Express

Institut Fresnel, CNRS, Aix-Marseille Université, Ecole Centrale Marseille Campus de Saint-Jérôme, 13013 Marseille, France.

Published: August 2012

Dielectric particles supporting both magnetic and electric Mie resonances are shown to be able to either reflect or collect the light emitted by a single photon source. An analytical model accurately predicts the scattering behavior of a single dielectric particle electromagnetically coupled to the electric dipole transition moment of a quantum emitter. We derive near field extensions of the Kerker conditions in order to determine the conditions that strongly reduce scattering in either the forward or backward directions. This concept is then employed to design a lossless dielectric collector element whose directivity is boosted by the coherent scattering of both electric and magnetic dipoles.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.20.020376DOI Listing

Publication Analysis

Top Keywords

magnetic electric
8
boosting directivity
4
directivity optical
4
optical antennas
4
antennas magnetic
4
electric
4
electric dipolar
4
dipolar resonant
4
resonant particles
4
particles dielectric
4

Similar Publications

Background: Recent technological advances have introduced novel methods for measuring body composition, each with unique benefits and limitations. The choice of method often depends on the trade-offs between accuracy, cost, participant burden, and the ability to measure specific body composition compartments.

Objective: To review the considerations of cost, accuracy, portability, and participant burden in reference and emerging body composition assessment methods, and to evaluate their clinical applicability.

View Article and Find Full Text PDF

Room-Temperature CsPbI-Quantum-Dot Reinforced Solid-State Li-Polymer Battery.

Small

January 2025

Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

A novel polymer electrolyte based on CsPbI quantum dots (QDs) reinforced polyacrylonitrile (PAN), named as PIL, is exploited to address the low room-temperature (RT) ion conductivity and poor interfacial compatibility of polymer solid-state electrolytes. After optimizing the content of CsPbI QDs, RT ion conductivity of PIL largely increased from 0.077 to 0.

View Article and Find Full Text PDF

Recent Advancements in Localization Technologies for Wireless Capsule Endoscopy: A Technical Review.

Sensors (Basel)

January 2025

Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC 3800, Australia.

Conventional endoscopy is limited in its ability to examine the small bowel and perform long-term monitoring due to the risk of infection and tissue perforation. Wireless Capsule Endoscopy (WCE) is a painless and non-invasive method of examining the body's internal organs using a small camera that is swallowed like a pill. The existing active locomotion technologies do not have a practical localization system to control the capsule's movement within the body.

View Article and Find Full Text PDF

We propose a non-magnetic transparent heating film based on silver nanowires (Ag-NWs) for application in spin-exchange relaxation-free (SERF) magnetic field measurement devices. To achieve ultra-high sensitivity in atomic magnetometers, the atoms within the alkali metal vapor cell must be maintained in a stable and uniform high-temperature environment. Ag-NWs, as a transparent conductive material with exceptional electrical conductivity, are well suited for this application.

View Article and Find Full Text PDF

This article is devoted to the development of a new method for the synthesis of magnetic cobalt boride nanoparticles using a low-energy approach. The obtained nanoparticles were used to create composite materials based on industrial thermoplastic ABS. The effect of different concentrations of nanoparticles on the physical, mechanical, magnetic, and dielectric properties of composite materials was studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!