Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the last years a variety of fiber optic Raman probes emerged, which are only partly suited for in vivo applications. The in vivo capability is often limited by the bulkiness of the probes. The size is associated with the required filtering of the probes, which is necessary due to Raman scattering inside the fibers. We employed in-line fiber Bragg gratings (FBG) as notch filter for the collection path and integrated them in a novel type of Raman probe. Multicore singlemode fibers (MCSMF) were designed and drawn integrating 19 singlemode cores to achieve better collection efficiency. A Raman probe was assembled with one excitation fiber and six MCSMF with inscribed FBGs as collection fibers. The probe was characterized regarding Raman background suppression, collection efficiency, and distance dependence. First Raman measurements on brain tissue are presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.20.020156 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!