17α-hydroxylase/17,20-lyase deficiency (17OHD) is a rare autosomal recessive genetic disease that is characterized by low-renin hypertension, hypokalemia, and abnormal development of the genitalia. Mutations in the CYP17A1 gene account for this disease. We aim to investigate the CYP17A1 mutation and analyze its possible influence on phenotype in a Chinese patient with 17OHD. Steroid hormones were assayed. The 8 exons of the CYP17A1 gene were amplified and directly sequenced. Wild-type and mutant CYP17A1 cDNA were cloned into pcDNA3.1 expression vectors and transfected into 293T cells. Finally, 17-hydroxylase and 17,20-lyase activity were detected by using progesterone and 17-hydroxypregnenolone as the substrates. A novel missense mutation c.716 G>A located in exon 4 that changed the amino acid from arginine to glutamine (R239Q) was discovered in the patient. Steric model analysis of CYP17A1 showed that R239Q changed the local structure and the electrostatic potential. Functional study indicated that the R239Q mutant caused the complete loss of both 17α-hydroxylase and 17,20-lyase activities. Our study expanded the CYP17A1 mutation spectrum. With a functional study, we confirmed that the novel mutation caused the complete loss of both 17α-hydroxylase and 17,20-lyase activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.trsl.2012.08.007 | DOI Listing |
J Pediatr Endocrinol Metab
January 2025
Department of Genetics, Reproductive Biomedicine Research Center, 48499 Royan Institute for Reproductive Biomedicine, ACECR , Tehran, Iran.
Differences of sex development (DSD) refer to various congenital conditions affecting the urogenital and hormonal systems. Accurate diagnosis and personalized management are crucial for supporting patients through complex decisions, such as those related to gender identity. This study represents the first comprehensive investigation into DSD in Iran, analyzing patient's clinical and genetic data between 1991 and 2020.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China. Electronic address:
Photoperiodic changes induce seasonal variations in vitamin D levels, which can affect reproductive function. The muskrat, a seasonal breeder, possesses a pair of scented glands that secrete musky substances to attract mates. The scented glands can also synthesize androgens, which regulate their function through autocrine or paracrine signaling.
View Article and Find Full Text PDFEndocrinology
January 2025
Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec - Université Laval, Québec City, Québec, Canada, G1V 4G2.
Leydig cells produce hormones that are required for male development, fertility, and health. Two Leydig cell populations produce these hormones but at different times during development: fetal Leydig cells which are active during fetal life and adult Leydig cells that are functional postnatally. Historically, our ability to understand the origin and function of Leydig cells has been made difficult by the lack of genetic models to exclusively target these cells.
View Article and Find Full Text PDFChem Res Toxicol
January 2025
Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
Perfluorodecanoic acid (PFDA), a C10 fluorine-containing compound, is used widely and found to be present anywhere. However, whether it has reproductive toxicity for fetal Leydig cells and the underlying mechanisms remain unknown. PFDA was investigated for its effects on fetal Leydig cells (FLCs) following exposure to 0, 1, 2.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, China. Electronic address:
Sulfur dioxide (SO) is a ubiquitous environmental pollutant that has been shown to be toxic to the male reproductive system, but the underlying mechanism remains unclear. Therefore, the SO-treated mice and primary Leydig cell models were established to investigate the effects of SO on the production of testosterone and its specific mechanism. The results demonstrated that SO activated the ERK1/2 signaling pathway, leading to increased key proteins expression of testosterone biosynthesis and elevated testosterone levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!