Implementing wavelet inverse-transform processor with surface acoustic wave device.

Ultrasonics

School of Information Science and Technology, Donghua University, Shanghai 201620, China.

Published: February 2013

AI Article Synopsis

Article Abstract

The objective of this research was to investigate the implementation schemes of the wavelet inverse-transform processor using surface acoustic wave (SAW) device, the length function of defining the electrodes, and the possibility of solving the load resistance and the internal resistance for the wavelet inverse-transform processor using SAW device. In this paper, we investigate the implementation schemes of the wavelet inverse-transform processor using SAW device. In the implementation scheme that the input interdigital transducer (IDT) and output IDT stand in a line, because the electrode-overlap envelope of the input IDT is identical with the one of the output IDT (i.e. the two transducers are identical), the product of the input IDT's frequency response and the output IDT's frequency response can be implemented, so that the wavelet inverse-transform processor can be fabricated. X-112(0)Y LiTaO(3) is used as a substrate material to fabricate the wavelet inverse-transform processor. The size of the wavelet inverse-transform processor using this implementation scheme is small, so its cost is low. First, according to the envelope function of the wavelet function, the length function of the electrodes is defined, then, the lengths of the electrodes can be calculated from the length function of the electrodes, finally, the input IDT and output IDT can be designed according to the lengths and widths for the electrodes. In this paper, we also present the load resistance and the internal resistance as the two problems of the wavelet inverse-transform processor using SAW devices. The solutions to these problems are achieved in this study. When the amplifiers are subjected to the input end and output end for the wavelet inverse-transform processor, they can eliminate the influence of the load resistance and the internal resistance on the output voltage of the wavelet inverse-transform processor using SAW device.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2012.08.010DOI Listing

Publication Analysis

Top Keywords

wavelet inverse-transform
40
inverse-transform processor
40
length function
12
load resistance
12
resistance internal
12
internal resistance
12
processor device
12
output idt
12
inverse-transform
10
processor
10

Similar Publications

Purpose: To demonstrate a novel MR elastography (MRE) technique, termed here wavelet MRE. With this technique, broadband motion sensitivity is achievable. Moreover, the true tissue displacement can be reconstructed with a simple inverse transform.

View Article and Find Full Text PDF

A versatile Wavelet-Enhanced CNN-Transformer for improved fluorescence microscopy image restoration.

Neural Netw

February 2024

School of Information Science and Technology, Fudan University, Shanghai, 200433, China; Department of Automation, Tsinghua University, Beijing, 100084, China. Electronic address:

Fluorescence microscopes are indispensable tools for the life science research community. Nevertheless, the presence of optical component limitations, coupled with the maximum photon budget that the specimen can tolerate, inevitably leads to a decline in imaging quality and a lack of useful signals. Therefore, image restoration becomes essential for ensuring high-quality and accurate analyses.

View Article and Find Full Text PDF

Image denoising aims to restore a clean image from an observed noisy one. Model-based image denoising approaches can achieve good generalization ability over different noise levels and are with high interpretability. Learning-based approaches are able to achieve better results, but usually with weaker generalization ability and interpretability.

View Article and Find Full Text PDF

Image watermarking is usually decomposed into three steps: (i) a feature vector is extracted from an image; (ii) it is modified to embed the watermark; (iii) and it is projected back into the image space while avoiding the creation of visual artefacts. This feature extraction is usually based on a classical image representation given by the Discrete Wavelet Transform or the Discrete Cosine Transform for instance. These transformations require very accurate synchronisation between the embedding and the detection and usually rely on various registration mechanisms for that purpose.

View Article and Find Full Text PDF

Clinical diagnosis has high requirements for the visual effect of medical images. To obtain rich detail features and clear edges for fusion medical images, an image fusion algorithm FFST-SR-PCNN based on fast finite shearlet transform (FFST) and sparse representation is proposed, aiming at the problem of poor clarity of edge details that is conducive to maintaining the details of source image in current algorithms. Firstly, the source image is decomposed into low-frequency coefficients and high-frequency coefficients by FFST.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!