Combinatorial × computational × cheminformatics (C3) approach to characterization of congeneric libraries of organic pollutants.

J Chem Inf Model

Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Mail Stop 50F-1650, Berkeley, California 94720-8139, USA.

Published: November 2012

Congeners are molecules based on the same carbon skeleton but are different by the number of substituents and/or a substitution pattern. Examples are 1-chloronaphthalene, 1,4-dichloronaphthalene, and 1,3,8-trichloronaphthalene. Various persistent organic pollutants (POPs) exist in the environment as families of congeners. Very large numbers of possible congeners make their experimental characterization and risk assessment unfeasible. Computational high-throughput and quantitative structure-property relationship (QSPR) modeling has been limited by the lack of tools and approaches facilitating analysis of such POP families. We present a comprehensive approach that enables modeling of extremely large congeneric libraries. The approach involves three steps: (1) combinatorial generation of a library of congeners, (2) quantum chemical characterization of each structure at the PM6 semiempirical level to obtain molecular descriptors, and (3) analysis of the information generated in step 2. In steps 1-3, we employ combinatorial, computational, and cheminformatics techniques, respectively. Therefore, this hybrid approach is named "Combinatorial × Computational × Cheminformatics", or just abbreviated as C(3) (or C-cubed) approach. We demonstrate the usefulness of this approach by generating and characterizing Br- and Cl-substituted congeneric families of 23 typical POPs. The analysis of the resulting set of 1 840 951 congeners that includes Cl-, Br-, and mixed Br/Cl-substituted species, proves that, based on structural similarities defined by the molecular descriptors' values, the existing QSPR models developed originally for Cl- and Br-substituted congeners can be applied also to mixed Br/Cl-substituted ones. Thus, the C(3) approach may serve as a tool for exploring structural applicability domains of the existing QSPR models for congeneric sets.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci300289bDOI Listing

Publication Analysis

Top Keywords

combinatorial computational
8
computational cheminformatics
8
congeneric libraries
8
organic pollutants
8
mixed br/cl-substituted
8
existing qspr
8
qspr models
8
approach
7
congeners
6
cheminformatics approach
4

Similar Publications

Unlabelled: (Mtb) exhibits an impressive ability to adapt to rapidly changing environments, despite its genome's apparent stability. Recently, phase variation through indel formation in homopolymeric tracts (HT) has emerged as a potentially important mechanism promoting adaptation in Mtb. This study examines the impact of common phase variants associated with the ESX-1 type VII secretion system, focusing on a highly variable HT upstream of the ESX-1 regulatory factor, .

View Article and Find Full Text PDF

Success of phage therapies is limited by bacterial defenses against phages. While a large variety of anti-phage defense mechanisms has been characterized, how expression of these systems is distributed across individual cells and how their combined activities translate into protection from phages has not been studied. Using bacterial single-cell RNA sequencing, we profiled the transcriptomes of ~50,000 cells from cultures of a human pathobiont, , infected with a lytic bacteriophage.

View Article and Find Full Text PDF

Missing values arise routinely in real-world sequential (string) datasets due to: (1) imprecise data measurements; (2) flexible sequence modeling, such as binding profiles of molecular sequences; or (3) the existence of confidential information in a dataset which has been deleted deliberately for privacy protection. In order to analyze such datasets, it is often important to replace each missing value, with one or more letters, in an efficient and effective way. Here we formalize this task as a combinatorial optimization problem: the set of constraints includes the of the missing value (i.

View Article and Find Full Text PDF

The application of messenger RNA (mRNA) technology in antigen-based immuno-oncology therapies represents a significant advancement in cancer treatment. Cancer vaccines are an effective combinatorial partner to sensitize the host immune system to the tumor and boost the efficacy of immune therapies. Selecting suitable tumor antigens is the key step to devising effective vaccinations and amplifying the immune response.

View Article and Find Full Text PDF

PUR-GEN: A web server for automated generation of polyurethane fragment libraries.

Comput Struct Biotechnol J

December 2024

Tunneling Group, Biotechnology Centre, Silesian University of Technology, Bolesława Krzywoustego 8, Gliwice 44-100, Poland.

The biodegradation of synthetic polymers offers a promising solution for sustainable plastic recycling. Polyurethanes (PUR) stand out among these polymers due to their susceptibility to enzymatic hydrolysis. However, the intricate 3D structures formed by PUR chains present challenges for biodegradation studies, both computational and experimental.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!