Effect of x-ray treatments on pathogenic bacteria, inherent microbiota, color, and texture on parsley leaves.

Foodborne Pathog Dis

Coastal Research & Extension Center, Mississippi State University, Pascagoula, Mississippi 39567, USA.

Published: October 2012

This work is a part of systematic studies of the effect of X-ray treatments on fresh produce. The main objective of this investigation was to study the effects of X-ray treatments in reducing the concentration of artificially inoculated Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica, and Shigella flexneri, and inherent microbiota on parsley leaves. The secondary objective was to study the effects of X-ray treatments on color and texture parameters on treated parsley leaves. The Dip-inoculated method was used to inoculate parsley leaves with a mixture of two or three strains of each tested organism at 10(8) to 10(9) colony-forming unit (CFU)/mL; the inoculated parsley leaves were then air-dried and followed by treatment with different doses of X-ray (0, 0.1, 0.5, 1.0, and 1.5 kGy) at 22°C and 55-60% relative humidity. Surviving bacterial populations on parsley leaves were evaluated using a nonselective medium (tryptic soy agar) with a selective medium overlay for each bacterium: E. coli O157:H7 (CT-SMAC agar), L. monocytogenes (MOA), and S. enterica and S. flexneri (XLD). Approximately 5.8, 3.1, 5.7, and 5.2 log CFU reductions of E. coli O157:H7, L. monocytogenes, S. enterica, and Shigella flexneri were achieved by treatment with 1.0 kGy X-ray, respectively. Furthermore, the populations of E. coli O157:H7, L. monocytogenes, S. enterica, and Shigella flexneri were reduced to less than the detectable limit (1.0 log CFU/g) by treatment with 1.5 kGy X-ray. Treatment with 1.5 kGy X-ray significantly reduced the initial inherent microbiota on parsley leaves, and inherent levels were significantly (p < 0.05) lower than the control sample throughout refrigerated storage for 30 days. No significant differences (p > 0.05) in color or texture of control and treated samples with 0.1-1.5 X-ray were observed. The results of investigation indicated that X-ray is an effective technology to eliminate E. coli O157:H7, L. monocytogenes, S. enterica, and Shigella flexneri, and to extend the shelf life of parsley leaves.

Download full-text PDF

Source
http://dx.doi.org/10.1089/fpd.2012.1191DOI Listing

Publication Analysis

Top Keywords

parsley leaves
32
coli o157h7
20
x-ray treatments
16
enterica shigella
16
shigella flexneri
16
inherent microbiota
12
color texture
12
o157h7 monocytogenes
12
monocytogenes enterica
12
treatment kgy
12

Similar Publications

Apiole, an important constituent of parsley, is a mixed-type inhibitor of the CYP1A subfamily.

Mutat Res

November 2024

Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, Insurgentes Cuicuilco, Coyoacán, Ciudad de México C. P. 04530, Mexico.

Apiole (1-allyl-2,5-dimethoxy-3,4-methylenedioxybenzene) and parsley leaves ethanolic extract containing it inhibit the rat liver microsomal ethoxy- and methoxyresorufin-O-deacetylase activities associated with cytochrome P450 (CYP) 1A1 and 1A2, respectively. Cytochrome P4501A subfamily metabolizes environmental mutagens and several drugs, leading to the formation of mutagenic metabolites. Docking analysis showed that residue Phe123 within the active site of the CYP1A1 enzyme is bound to apiole through a π/π stacking of its benzene ring.

View Article and Find Full Text PDF

The current study focused on the valorization of carrot leaves, L. because of their high amount of ascorbic acid (AA), phenolic compounds, and the related antioxidant activity. In this study, the changes in carrot leaves caused by different drying techniques (freeze, vacuum, microwave-assisted infrared, oven) and different storage conditions (room temperature and refrigerator) were investigated.

View Article and Find Full Text PDF

Background: Food-associated antibiotic-resistant bacteria can cause infections that may critically impact human health. The objectives of this study were to determine the microbial contamination level of green leafy vegetables and their antibiotic resistance pattern.

Methods: Sixty-three samples of leafy vegetables were collected from Dammam Central Fruit and Vegetables Market from January to June 2023.

View Article and Find Full Text PDF

Green plastics: Direct production from grocery wastes to bioplastics and structural characterization by using synchrotron FTIR.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Istanbul Medeniyet University, School of Engineering and Natural Sciences, Department of Biomedical Engineering, Istanbul, Turkey; Istanbul Medeniyet University, Science and Advanced Technologies Research Center (BILTAM), 34700 Istanbul, Turkey. Electronic address:

Lignocellulosic bioplastics were produced using four different green wastes: hemp, parsley stem, pineapple leaves and walnut shell. Two different solutions were used to dissolve the green wastes: trifluoroacetic acid (TFA) and pure water. The changes in their natural structures and the solvent effect during the regeneration in biofilm formation were investigated by using Synchrotron FTIR Microspectroscopy (SR-µFTIR).

View Article and Find Full Text PDF

Fabricating three-dimensional (3D) scaffolds is attractive due to various advantages for tissue engineering, such as cell migration, proliferation, and adhesion. Since cell growth depends on transmitting nutrients and cell residues, naturally vascularized scaffolds are superior for tissue engineering. Vascular passages help the inflow and outflow of liquids, nutrients, and waste disposal from the scaffold and cell growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!