A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The N-terminal capping propensities of the D-helix modulate the allosteric activation of the Escherichia coli cAMP receptor protein. | LitMetric

Transduction of biological signals at the molecular level involves the activation and/or inhibition of allosteric proteins. In the transcription factor cAMP receptor protein (CRP) from Escherichia coli, the allosteric activation, or apo-holo transition, involves rigid body motions of domains and structural rearrangements within the hinge region connecting the cAMP- and DNA-binding domains. During this apo-holo transition, residue 138 is converted as part of the elongated D-helix to the position of the N-terminal capping residue of a shorter D-helix. The goal of the current study is to elucidate the role of residue 138 in modulating the allostery between cAMP and DNA binding. By systematically mutating residue 138, we found that mutants with higher N-terminal capping propensities lead to increased cooperativity of cAMP binding and a concomitant increase in affinity for lac-DNA. Furthermore, mutants with higher N-terminal capping propensity correlate with properties characteristic of holo-CRP, particularly, increase in protein structural dynamics. Overall, our results provide a quantitative characterization of the role of residue 138 in the isomerization equilibrium between the apo and holo forms of CRP, and in turn the thermodynamic underpin to the molecular model of allostery revealed by the high resolution structural studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3501046PMC
http://dx.doi.org/10.1074/jbc.M112.404806DOI Listing

Publication Analysis

Top Keywords

n-terminal capping
16
residue 138
16
capping propensities
8
allosteric activation
8
escherichia coli
8
camp receptor
8
receptor protein
8
apo-holo transition
8
role residue
8
mutants higher
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!