TLR3 activation efficiency by high or low molecular mass poly I:C.

Innate Immun

Center for Animal Experiment/Animal Biosafety Level III Laboratory and State Key Laboratory of Virology, Wuhan University School of Medicine, Wuhan, Hubei, People's Republic of China.

Published: September 2013

Toll-like receptor 3 (TLR3) plays a critical role in initiating type I IFN-mediated innate immunity against viral infections. TLR3 recognizes various forms of double stranded (ds) RNA, including viral dsRNA and a synthetic mimic of dsRNA, poly I:C, which has been used extensively as a TLR3 ligand to induce antiviral immunity. The activation efficiency of TLR3 by poly I:C is influenced by various factors, including size of the ligands, delivery methods and cell types. In this study, we examined the stimulatory effect of two commercially-available poly I:Cs [high molecular mass (HMM) and low molecular mass (LMM)] on TLR3 activation in various human cell types by determining the induction of type I and type III IFNs, as well as the antiviral effect. We demonstrated that the direct addition of both HMM- and LMM-poly I:C to the cultures of primary macrophages or a neuroplastoma cell line could activate TLR3. However, the transfection of poly I:C was necessary to induce TLR3 activation in other cell types studied. In all the cell lines tested, the efficiency of TLR3 activation by HMM-poly I:C was significantly higher than that by LMM-poly I:C. These observations indicate the importance and necessity of developing effective TLR3 ligands for antiviral therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942089PMC
http://dx.doi.org/10.1177/1753425912459975DOI Listing

Publication Analysis

Top Keywords

tlr3 activation
16
molecular mass
12
cell types
12
tlr3
10
activation efficiency
8
low molecular
8
efficiency tlr3
8
poly
5
cell
5
efficiency high
4

Similar Publications

Toll-like receptors (TLRs) play a crucial role in the immune response to pathogen invasion. The TLR response patterns in teleost are significantly different from those in mammals. In this study, we systematically identified and characterized the TLR family of crucian carp (Carassius auratus).

View Article and Find Full Text PDF

Neuraminidase and hemagglutinin serve as the crucial surface proteins of influenza viruses. Hemagglutinin, as a variable surface protein, is indispensable for vaccine development. Therefore, Neuraminidase must not be overlooked in the formulation of the recombinant vaccine prototype, which may serve as a candidate for designing a multi-epitope recombinant vaccine using immunoinformatics.

View Article and Find Full Text PDF

Various immunotherapeutic strategies are being developed to fight cancer, which is one of the leading causes of mortality. Dendritic cells (DCs), being professional antigen-presenting cells, after efficient manipulation with tumor-associated antigens, can lead to effective T-cell recruitment and activation at the tumor site, resulting in cytotoxic T-cell-mediated cancer cell killing. To circumvent the inefficiencies of DC modification and patient infusion, an alternative strategy involving DC activation has been explored here.

View Article and Find Full Text PDF

Tuberculosis (TB) remains a major global health concern, with the transition from latent to active TB still poorly understood. Therefore, enhancing clinical management and prevention strategies for TB is essential. High-throughput sequencing data of genes and miRNAs from individuals at different TB stages were obtained from NCBI.

View Article and Find Full Text PDF

We previously reported that high tumoral expression of Toll-like receptor 3 (TLR3) and CXCL10, a member of the CXC chemokine family, was an independent positive prognostic factor in patients with advanced thoracic esophageal squamous cell carcinoma (ESCC). However, the direct relationships between TLR3 and CXCL10 in ESCC cells was not fully understood. Here, we analyzed TLR3 mRNA and protein expression in two ESCC lines (TE8 and KYSE180) and one esophageal adenocarcinoma (EAC) line (OE19).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!