DNA double-stranded oligomers are studied by steady-state and time-resolved fluorescence spectroscopy from the femtosecond to the nanosecond time-scale, following excitation at 267 nm. It is shown that emission arises from three types of excited states. (i) Bright ππ* states emitting around 330 nm and decaying on the sub-picosecond time-scale with an average lifetime of ca. 0.4 ps and a quantum yield lower than 4 × 10(-6). (ii) Excimers/exciplexes emitting around 430 nm and decaying on the sub-nanosecond time-scale. (iii) Excited states emitting mainly at short wavelengths (λ < 330 nm) and decaying on the nanosecond time-scale, possibly correlated to GC pairs. The properties of the examined duplexes, exhibiting significant disorder with respect to the nearest neighbour base sequence, are radically different than those of the much longer and disordered calf thymus DNA. Such behaviour suggests that long range and/or sequence effects play a key role in the fate of excitation energy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2pp25180a | DOI Listing |
J Am Chem Soc
January 2025
Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China.
The emergence of spinon quasiparticles, which carry spin but lack charge, is a hallmark of collective quantum phenomena in low-dimensional quantum spin systems. While the existence of spinons has been demonstrated through scattering spectroscopy in ensemble samples, real-space imaging of these quasiparticles within individual spin chains has remained elusive. In this study, we construct individual Heisenberg antiferromagnetic spin-1/2 chains using open-shell [2]triangulene molecules as building blocks.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States.
The bonding and spectroscopic properties of LaX and AcX (X = O and F) diatomic molecules were studied by high-level ab initio CCSD(T) and SO-CASPT2 electronic structure calculations. Bond dissociation energies (BDEs) were calculated at the Feller-Peterson-Dixon (FPD) level. Potential energy curves and spectroscopic constants for the lowest-lying spin-orbit Ω states were obtained at the SO-CASPT2/aQ-DK level.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China.
Given a number of data sets for evaluating the performance of single reference methods for the low-lying excited states of closed-shell molecules, a comprehensive data set for assessing the performance of multireference methods for the low-lying excited states of open-shell systems is still lacking. For this reason, we propose an extension (QUEST#4X) of the radical subset of QUEST#4 ( , , 3720) to cover 110 doublet and 39 quartet excited states. Near-exact results obtained by iterative configuration interaction with selection and second-order perturbation correction (iCIPT2) are taken as benchmark to calibrate static-dynamic-static configuration interaction (SDSCI) and static-dynamic-static second-order perturbation theory (SDSPT2), which are minimal MRCI and CI-like perturbation theory, respectively.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.
We report the results of a study of the interaction between torsion and the low frequency out-of-plane silyl wag vibration in the ground, S, and excited, S, electronic states of phenylsilane. These studies follow the observation of interactions between methyl torsion and the out-of-plane methyl wagging vibration in toluene, several fluoro-substituted toluenes and -methylpyrrole. The interaction leads to various spectroscopic constants becoming divorced from their usual physical meaning.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.
Hybrid quantum-classical computing algorithms offer significant potential for accelerating the calculation of the electronic structure of strongly correlated molecules. In this work, we present the first quantum simulation of conical intersections (CIs) in a biomolecule, cytosine, using a superconducting quantum computer. We apply the contracted quantum eigensolver (CQE)─with comparisons to conventional variational quantum deflation (VQD)─to compute the near-degenerate ground and excited states associated with the conical intersection, a key feature governing the photostability of DNA and RNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!