Serine carboxypeptidase-like acyltransferases from plants.

Methods Enzymol

Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom.

Published: February 2013

Serine carboxypeptidase-like (SCPL) acyltransferases facilitate transacylation reactions using energy-rich 1-O-β-glucose esters in the synthesis of an array of bioactive compounds and are associated with the diversification of plant natural products. SCPL acyltransferases have evolved from a hydrolytic ancestor by adapting functional elements of the proteases such as the catalytic triad, oxyanion hole, and substrate recognition H-bond network to their new function. As vacuolar proteins, SCPL acyltransferases define an alternative cellular route of transacylation spatially separated from the cytoplasmic enzymes of the BAHD acyltransferase family named according to the first characterized members (BEAT, AHCT, HCBT, and DAT). Recent efforts in cloning and characterization led to the identification of diagnostic peptides for SCPL acyltransferases, enabling the detection of candidate genes in several plant genomes. Detailed biochemical analysis of SCPL acyltransferases is strongly dependent on comprehensive heterologous expression systems, efficient protein purification protocols, and the supply of appropriate substrates. This chapter describes some useful techniques and strategies for identification and characterization of SCPL acyltransferases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/B978-0-12-394291-3.00006-XDOI Listing

Publication Analysis

Top Keywords

scpl acyltransferases
24
serine carboxypeptidase-like
8
acyltransferases
7
scpl
6
carboxypeptidase-like acyltransferases
4
acyltransferases plants
4
plants serine
4
carboxypeptidase-like scpl
4
acyltransferases facilitate
4
facilitate transacylation
4

Similar Publications

Plant chemical diversity is largely owing to a number of enzymes which catalyse reactions involved in the assembly, and in the subsequent chemical modifications, of the core structures of major classes of plant specialized metabolites. One such reaction is acylation. With this in mind, to study the deep evolutionary history of BAHD and the serine-carboxypeptidase-like (SCPL) acyltransferase genes, we assembled phylogenomic synteny networks based on a large-scale inference analysis of orthologues across whole-genome sequences of 126 species spanning Stramenopiles and Archaeplastida, including , tomato () and maize ().

View Article and Find Full Text PDF

A vacuolar protein MaSCPL1 mediates anthocyanin acylation modifications in blue-flowered grape hyacinth.

Plant Sci

December 2024

College of Landscape Architecture and Art, Northwest A & F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A & F University, Yangling, Shaanxi 712100, China. Electronic address:

The grape hyacinth is renowned for its profuse blue flowers, which confer substantial scientific and ornamental significance as well as considerable potential for industrial applications. The serine carboxypeptidase-like acyltransferases (SCPL-ATs) family is crucial for the blue flower coloration. To elucidate SCPL-ATs involved in anthocyanin modification in grape hyacinth, we performed a transcriptomic analysis of grape hyacinth SCPL-ATs.

View Article and Find Full Text PDF

Genome-Wide Analysis of in Soybean and Their Roles in Stress Resistance.

Int J Mol Sci

June 2024

State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.

The () gene family plays a crucial role in the regulation of plant growth, development, and stress response through activities such as acyltransferases in plant secondary metabolism pathways. Although genes have been identified in various plant species, their specific functions and characteristics in soybean () have not yet been studied. We identified and characterized 73 genes, grouped into three subgroups based on gene structure and phylogenetic relationships.

View Article and Find Full Text PDF

A serine carboxypeptidase-like acyltransferase catalyzes consecutive four-step reactions of hydrolyzable tannin biosynthesis in Camellia oleifera.

Plant J

August 2024

State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.

Hydrolyzable tannins (HTs), a class of polyphenolic compounds found in dicotyledonous plants, are widely used in food and pharmaceutical industries because of their beneficial effects on human health. Although the biosynthesis of simple HTs has been verified at the enzymatic level, relevant genes have not yet been identified. Here, based on the parent ion-fragment ion pairs in the feature fragment data obtained using UPLC-Q-TOF-/MS/MS, galloyl phenolic compounds in the leaves of Camellia sinensis and C.

View Article and Find Full Text PDF

SCPL acyltransferases catalyze the metabolism of chlorogenic acid during purple coneflower seed germination.

New Phytol

July 2024

Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.

The metabolism of massively accumulated chlorogenic acid is crucial for the successful germination of purple coneflower (Echinacea purpurea (L.) Menoch). A serine carboxypeptidase-like (SCPL) acyltransferase (chicoric acid synthase, CAS) utilizes chlorogenic acid to produce chicoric acid during germination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!