In mammals, successful pregnancy is dependent in part on the adaptation or regulation of the maternal immune system to prevent the rejection of the embryonic semiallograft. A modification in Th cell function and secretion is a requirement for the establishment and maintenance of pregnancy. Although there is strong evidence from studies in humans and mice linking successful pregnancy with the predominance of Th2-type immunity, the situation in cattle remains unclear. This study describes the characterization of the immune response of the bovine maternal endometrium to the presence of a developing embryo, with specific emphasis on the macrophage and dendritic cell populations and associated factors, using quantitative real-time PCR, in situ hybridization, and immunohistochemistry. Furthermore, in vivo and in vitro models were developed to investigate the potential role of progesterone and interferon-tau (IFNT) in the regulation of these immune factors. There was a marked increase in the population of CD14(+) cells and CD172a-CD11c(+) cells in the endometrium in response to pregnancy, which was paralleled by increased mRNA expression of a number of non-Th-associated factors, including IL12B and IL15, and downregulation of IL18. In addition, we identified several novel IFNT- and progesterone-regulated factors, including IL12B, MCP1, MCP2, PTX3, RSAD2, and TNFA, whose regulation may be critical to pregnancy outcome. Our findings give center stage to non-Th cells, such as monocytes/macrophages and dendritic cells, in the bovine immune response to the semiallogenic embryo. In conclusion, we propose that in cattle, successful pregnancy establishment is associated with a dramatic regulation of the cytokine network, primarily by endometrial monocytes/macrophages and dendritic cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1095/biolreprod.112.101121 | DOI Listing |
Biomark Res
December 2024
Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China.
Platelets are essential for blood clotting and maintaining normal hemostasis. In pathological conditions, platelets are increasingly recognized as crucial regulatory factors in various immune-mediated inflammatory diseases. Resting platelets are induced by various factors such as immune complexes through Fc receptors, platelet-targeting autoantibodies and other platelet-activating stimuli.
View Article and Find Full Text PDFClin Immunol
December 2024
Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France. Electronic address:
Occupational exposure to crystalline silica is etiologically linked to an increased incidence of systemic sclerosis (SSc), also called Erasmus syndrome. The underlying mechanisms of silica-related SSc are still poorly understood. We demonstrated that early and repeated silica exposure contribute to the severity of SSc symptoms in the hypochloric acid (HOCl)-induced SSc mouse model.
View Article and Find Full Text PDFAgeing Res Rev
December 2024
The First Clinical Medical College, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing 210023, China. Electronic address:
Triptolide (TP) is the primary pharmacological component of Tripterygium Glycosides (TG), which has anti-inflammatory, antiproliferative, and immunosuppressive properties, among other pharmacological actions, and has excellent potential for developing into a new DMARD. We have reviewed the effects and mechanisms of TP on immunosuppression, inhibiting synovial proliferation, and preventing articular bone destruction in the treatment of rheumatoid arthritis (RA), which is a common disease in the elderly in this paper. We have found that TP has regulatory effects on multiple vital cells in the above-mentioned pathological process of RA, such as monocytes/macrophages, dendritic cells, T cells, fibroblast-like synoviocytes, and osteoclasts.
View Article and Find Full Text PDFAutoimmun Rev
December 2024
Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China. Electronic address:
Citrullination, a post-translational modification that changes arginine to citrulline in proteins, is vital for immune response modulation and cell signaling. Catalyzed by peptidyl arginine deiminases (PADs), citrullination is linked to various diseases, particularly autoimmune disorders like rheumatoid arthritis (RA). Citrullinated proteins can trigger the production of anti-citrullinated protein antibodies (ACPAs), included in RA classification criteria.
View Article and Find Full Text PDFFront Immunol
December 2024
Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy.
Introduction: Systemic sclerosis (SSc) is a complex autoimmune connective tissue disease characterized by microvascular damage, immune system reactivity and progressive fibrosis of skin and internal organs. Interstitial lung disease is the leading cause of death for SSc patients (SSc-ILD), and the process of lung fibrosis involves also circulating monocytes and alveolar macrophages.
Methods: Current study aimed to identify monocyte/macrophage phenotypes in lung and peripheral blood of SSc-ILD patients by immunostaining and flow cytometry, respectively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!