To investigate how, and to what extent, the following factors influence burn damage: (1) the angle of application of the ignition source to the sample surface, and (2) the flow rate for the ignition source, when assessing samples in accordance with ISO 8191-2:1988. Varying the ignition source flow rate and the angle of application of the ignition source to the sample undergoing testing, which are both variations on the existing procedure outlined in the Standard ISO 8191-2:1988. Burn damage as measured by the depth (if applicable) and greatest horizontal and vertical dimensions. Increasing the ignition source gas flow rate (from 45 ml/min to 240 ml/min) increased the measured burn damage for both foam and vinyl samples. The increased damage factor was at least two-fold (and up to five-fold). Changing the angle of application of the ignition source (45 degrees compared to 0 degrees) did not significantly affect the measured burn damage for either sample. These findings indicate that the direction of application of a match-flame equivalent ignition source has no significant affect on the resulting burn damage, but that increasing the ignition source flow rate increases the burn damage for both foam and vinyl samples.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10400435.2012.659833DOI Listing

Publication Analysis

Top Keywords

ignition source
36
burn damage
24
flow rate
20
angle application
16
increasing ignition
12
source flow
12
foam vinyl
12
application ignition
12
ignition
9
source
9

Similar Publications

Phosphor-converted light-emitting diodes in the marine environment: current status and future trends.

Chem Sci

January 2025

Zhuhai Key Laboratory of Optoelectronic Functional Materials and Membrane Technology, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 P. R. China

The exploitation and utilization of resources in marine environments have ignited a demand for advanced illumination and optical communication technologies. Light-emitting diodes (LEDs), heralded as "green lighting sources", offer a compelling solution to the technical challenges of marine exploration due to their inherent advantages. Among the myriad of LED technologies, phosphor-converted light-emitting diodes (pc-LEDs) have emerged as frontrunners in marine applications.

View Article and Find Full Text PDF

The majority of industries throughout the world rely largely on fossil fuels as their primary energy source. However, these resources are finite and become scarcer by the day. Therefore, exploring alternative fuels and additives for diesel fuel is imperative to mitigate fuel consumption.

View Article and Find Full Text PDF

Today, there are environmental problems all over the world due to the emission of greenhouse gasses caused by the combustion of diesel fuel. The excessive consumption and drastic reduction of fossil fuels have prompted the leaders of various countries, including Iran, to put the use of alternative and clean energy sources on the agenda. In recent years, the use of biofuels and the addition of nanoparticles to diesel fuel have reduced pollutant emissions, improved the environment, and enhanced the physicochemical properties of the fuel.

View Article and Find Full Text PDF

Utilization of loose waste biomass such as charcoal dust remains popular in low-to mid-income countries due to increased energy demands, poverty and heighten efforts to mitigate climate change. This study sought to investigate the effects of starch, paper and algae binders on the physical, mechanical and combustion characteristics and emission levels of manually-made acacia charcoal dust briquettes. Acacia charcoal dust is collected and mixed with different binders at binder proportions of 10 %, 15 %, 20 %, 25 % and 30 % of the total weight for individual samples.

View Article and Find Full Text PDF

Background: Operative fires are rare but unforgettable events, with the potential for devastating outcomes. It is estimated that 650 operating room (OR) fires occur each year in the United States, with the use of electrocautery devices and polymethylmethacrylate (PMMA) as the primary ignition and fuel sources. There are several case reports of OR fires caused by PMMA and electrocautery in the literature, but, to our knowledge, no formal studies have been performed exposing the flammability of PMMA and how PMMA reacts to an electrocautery ignition source.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!