Role of protons in sugar binding to LacY.

Proc Natl Acad Sci U S A

Department of Physiology, University of California, Los Angeles, CA 90095, USA.

Published: October 2012

WT lactose permease of Escherichia coli (LacY) reconstituted into proteoliposomes loaded with a pH-sensitive fluorophore exhibits robust uphill H(+) translocation coupled with downhill lactose transport. However, galactoside binding by mutants defective in lactose-induced H(+) translocation is not accompanied by release of an H(+) on the interior of the proteoliposomes. Because the pK(a) value for galactoside binding is ∼10.5, protonation of LacY likely precedes sugar binding at physiological pH. Consistently, purified WT LacY, as well as the mutants, binds substrate at pH 7.5-8.5 in detergent, but no change in ambient pH is observed, demonstrating directly that LacY already is protonated when sugar binds. However, a kinetic isotope effect (KIE) on the rate of binding is observed, indicating that deuterium substitution for protium affects an H(+) transfer reaction within LacY that is associated with sugar binding. At neutral pH or pD, both the rate of sugar dissociation (k(off)) and the forward rate (k(on)) are slower in D(2)O than in H(2)O (KIE is ∼2), and, as a result, no change in affinity (K(d)) is observed. Alkaline conditions enhance the effect of D(2)O on k(off), the KIE increases to 3.6-4.0, and affinity for sugar increases compared with H(2)O. In contrast, LacY mutants that exhibit pH-independent high-affinity binding up to pH 11.0 (e.g., Glu325 → Gln) exhibit the same KIE (1.5-1.8) at neutral or alkaline pH (pD). Proton inventory studies exhibit a linear relationship between k(off) and D(2)O concentration at neutral and alkaline pH, indicating that internal transfer of a single H(+) is involved in the KIE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3479522PMC
http://dx.doi.org/10.1073/pnas.1214890109DOI Listing

Publication Analysis

Top Keywords

sugar binding
12
galactoside binding
8
neutral alkaline
8
binding
7
lacy
7
sugar
6
kie
5
role protons
4
protons sugar
4
binding lacy
4

Similar Publications

Development of Single-Walled Carbon Nanotube-Based Electrodes with Enhanced Dispersion and Electrochemical Properties for Blood Glucose Monitoring.

Biosensors (Basel)

December 2024

Department of Gyedang College of General Education, Sangmyung University, 31 Sangmyungdae-Gil, Dongnam-Gu, Cheonan 31066, Republic of Korea.

The evolution of high-performance electrode materials has significantly impacted the development of real-time monitoring biosensors, emphasizing the need for compatibility with biomaterials and robust electrochemical properties. This work focuses on creating electrode materials utilizing single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), specifically examining their dispersion behavior and electrochemical characteristics. By using ultrasonic waves, we analyzed the dispersion of CNTs in various solvents, including N, N-dimethylformamide (DMF), deionized water (DW), ethanol, and acetone.

View Article and Find Full Text PDF

ScDREBA5 Enhances Cold Tolerance by Regulating Photosynthetic and Antioxidant Genes in the Desert Moss Syntrichia caninervis.

Plant Cell Environ

December 2024

State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.

Extreme cold events, becoming more frequent, affect plant growth and development. Much is known about C-repeat binding transcription factor (CBF)-dependent cold-signaling pathways in plants. However, the CBF-independent regulatory pathway in angiosperms is unclear, and the cold-signaling pathways in non-angiosperms lacking CBFs, such as the extremely cold-tolerant desert moss Syntrichia caninervis, are largely unknown.

View Article and Find Full Text PDF

Objectives: To investigate various supplements that improve insulin resistance, hormonal status, and oxidative stress in overweight or obese women with polycystic ovarian syndrome (PCOS).

Methods: A literature search was conducted on four different databases, which led to the discovery of twenty - five randomized controlled trials (RCTs). These RCTs evaluated the efficacy of various supplements in improving insulin resistance (IR), hormonal status, and oxidative stress among overweight or obese women diagnosed with PCOS.

View Article and Find Full Text PDF

Background: Drought is one of main critical factors that limits sugarcane productivity and juice quality in tropical regions. The unprecedented changes in climate such as monsoon failure, increase in temperature and other factors warrant the need for development of stress tolerant cultivars to sustain sugar production. Plant Nuclear factor (NF-Y) is one of the major classes of transcription factors that have a major role in plant development and abiotic stress response.

View Article and Find Full Text PDF

Supramolecular Peptide Depots for Glucose-Responsive Glucagon Delivery.

J Biomed Mater Res A

January 2025

Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, USA.

Precise blood glucose control continues to be a critical challenge in the treatment and management of type 1 diabetes in order to mitigate both acute and chronic complications. This study investigates the development of a supramolecular peptide amphiphile (PA) material functionalized with phenylboronic acid (PBA) for glucose-responsive glucagon delivery. The PA-PBA system self-assembles into nanofibrillar hydrogels in the presence of physiological glucose levels, resulting in stable hydrogels capable of releasing glucagon under hypoglycemic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!