There is an emerging need both in pharmacology and within the biomedical industry to develop new tools to target intracellular mechanisms. The efficient delivery of functionally active proteins within cells is potentially a powerful research strategy, especially through the use of antibodies. In this work, we report on a nanovector for the efficient encapsulation and delivery of antibodies into live cells with no significant loss of cell viability or any deleterious effect on cell metabolic activity. This delivery system is based on poly[2-(methacryloyloxy)ethyl phosphorylcholine]-block-[2-(diisopropylamino)ethyl methacrylate] (PMPC-PDPA), a pH-sensitive diblock copolymer that self-assembles to form nanometer-sized vesicles, also known as polymersomes, at physiological pH. Polymersomes can successfully deliver relatively high antibody payloads within different types of live cells. We demonstrate that these antibodies can target their respective epitope showing immunolabeling of γ-tubulin, actin, Golgi protein, and the transcription factor NF-κB in live cells. Finally, we demonstrate that intracellular delivery of antibodies can control specific subcellular events, as well as modulate cell activity and proinflammatory processes.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.12-212183DOI Listing

Publication Analysis

Top Keywords

live cells
16
delivery antibodies
12
intracellular delivery
8
antibodies live
8
delivery
5
antibodies
5
cells
5
fully synthetic
4
synthetic polymer
4
polymer vesicles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!