Carbon dioxide insertion into diamines: a computational study of solvent effects.

ChemSusChem

Department Chemie & Catalysis Research Center, Technische Universität München, 85747 Garching, Germany.

Published: October 2012

We studied computationally, on the model compound ethylenediamine, the insertion of carbon dioxide into diamines, yielding cyclic urea compounds. Two mechanisms were elaborated, depending on the value of the dielectric constant (DC) of the solvent. Accordingly, reaction mixtures with a high DC lead to carbamates, whereas lower DC values result in the preferred product cyclic urea. Additives behaving as "proton shuttles" act as catalysts, significantly reducing the activation barriers of insertion and ring closure to surmountable values. CO(2) insertion into diamines may also occur by autocatalysis, even without further additives, but under less favorable conditions, for example, lower yields. Amine reagents are most efficient at proton shuttling, followed by alcohols. The activation barrier of the rate-limiting step is lowered in a reaction mixture with higher values of DC, up to a critical value ε(cr) ≈ 18. Hence, in a suitably optimized reaction mixture, ring closure is suggested to occur under milder conditions than those previously applied experimentally. The two roles of the additive, that is, acting as proton shuttling agent and adjusting the effective DC of the reaction mixture, do not have to be assigned to a single compound, possibly affording a handle on process optimization.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201200222DOI Listing

Publication Analysis

Top Keywords

reaction mixture
12
carbon dioxide
8
insertion diamines
8
cyclic urea
8
ring closure
8
proton shuttling
8
insertion
4
dioxide insertion
4
diamines computational
4
computational study
4

Similar Publications

Background: With insight into the elevated levels of phosphorylation of diseased tau, it is believed that specific modifications occur in a time-dependent manner that contribute to tau's role in Alzheimer's disease pathogenesis and progression. Present methods to obtain phospho-tau (p-tau) from post-mortem tissue or recombinantly are insufficient to answer the foremost questions in the field, and there is currently no way to study each disease-relevant modification reproducibly or in isolation. To this point, learning about tau phosphorylation at the resolution of a single modification has been a major obstacle in clarifying whether certain sites are causative of disease or just a by-product of other harmful mechanisms.

View Article and Find Full Text PDF

Colloidal Germanium Quantum Dots with Broadly Tunable Size and Light Emission.

J Am Chem Soc

January 2025

McKetta Department of Chemical Engineering and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States.

Germanium (Ge) colloidal quantum dots (CQDs) were synthesized by thermal decomposition of GeI using capping ligand mixtures of oleylamine (OAm), octadecene (ODE), and trioctylphosphine (TOP). Average diameters could be tuned across a wide range, from 3 to 18 nm, by adjusting reactant concentrations, heating rates, and reaction temperatures. OAm promotes decomposition of GeI to Ge and serves as a weakly bound capping ligand.

View Article and Find Full Text PDF

Plant extracts, especially herbal extracts, are in line with the cosmetics development trend of natural and safe in today's world. Dried ginger essential oil (DGEO) is a fragrant oily liquid extracted from the dried roots of Zingiber officinale Rosc. This research investigated DGEO could effectively inhibit Staphylococcus aureus and Propionibacterium acnes.

View Article and Find Full Text PDF

Noble gas transport through geologic media has important applications in the prediction and characterization of measured gas signatures related to underground nuclear explosions (UNEs). Retarding processes such as adsorption can cause significant species fractionation of radionuclide gases, which has implications for measured and predicted signatures used to distinguish radioxenon originating from civilian nuclear facilities or from UNEs. Accounting for the effects of variable water saturation in geologic media on tracer transport is one of the most challenging aspects of modeling gas transport because there is no unifying relationship for the associated tortuosity changes between different rock types, and reactive transport processes such as adsorption that are affected by the presence of water likewise behave differently between gas species.

View Article and Find Full Text PDF

Precise Regulation of In Situ Exsolution Components of Nanoparticles for Constructing Active Interfaces toward Carbon Dioxide Reduction.

ACS Nano

January 2025

Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.

Metal nanocatalysts supported on oxide scaffolds have been widely used in energy storage and conversion reactions. So far, the main research is still focused on the growth, density, size, and activity enhancement of exsolved nanoparticles (NPs). However, the lack of precise regulation of the type and composition of NPs elements under reduction conditions has restricted the architectural development of in situ exsolution systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!