Visible light Laue diffraction from woodpile photonic crystals.

Appl Opt

University of Siegen, Department of Physics, Walter-Flex-Strasse 3, 57072 Siegen, Germany.

Published: October 2012

Bragg diffraction is often used as a tool to assess the structural quality of two-dimensional and three-dimensional (3D) photonic crystals. However, direct conclusions from the Laue diagrams to the underlying crystals structure cannot be drawn, as multiple scattering due to the high index contrast takes place. Here we systematically study the scattering of visible light by 3D woodpile photonic crystals with varying internal refractive index contrast Δn, to determine the limits of the single (kinematic) scattering approach. We aim to describe the intensity distribution of diffracting Bragg peaks with analytic expressions similarly to x-ray scattering at electronic crystals. Measured scattering curves of selected Bragg reflections are classified in terms of Δn. We find that the kinematic approach describes the shape and intensity distribution of experimental scattering curves in acceptable accuracy as long as Δn<0.15. The transition between single and multiple scattering is observed for Δn≈0.16-0.25 before multiple scattering dominates for larger Δn. The classification of the scattering regimes is confirmed by simulations in terms of numerical solution of Maxwell's equations.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.51.006732DOI Listing

Publication Analysis

Top Keywords

photonic crystals
12
visible light
8
woodpile photonic
8
intensity distribution
8
scattering curves
8
scattering
6
crystals
5
light laue
4
laue diffraction
4
diffraction woodpile
4

Similar Publications

Waterborne bacteria pose a serious hazard to human health, hence a precise detection method is required to identify them. A photonic crystal fiber sensor that takes into account the dangers of aquatic bacteria has been suggested, and its optical characteristics in the THz range have been quantitatively assessed. The PCF sensor was designed and examined as computed in Comsol Multiphysics, a program in which uses the method of "Finite Element Method" (FEM).

View Article and Find Full Text PDF

Disappearing and reappearing of structure order in colloidal photonic crystals.

Phys Chem Chem Phys

January 2025

State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Mechanoresponsive colloidal photonic crystals embedded in elastic solid matrices exhibit tunable optical properties under mechanical force, showing great potential for various applications. However, the response of colloidal crystals embedded in a liquid matrix remains largely unexplored. In this study, we investigate the structural and optical transitions of colloidal crystals composed of particles suspended in a liquid oligomer under pressing and shear forces.

View Article and Find Full Text PDF

Enhanced Efficiency and Stability of Tin Halide Perovskite Solar Cells Through MOF Integration.

Small

January 2025

Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.

Tin halide perovskites are promising candidates for lead-free perovskite solar cells due to their ideal bandgap and high charge-carrier mobility. However, poor crystal quality and rapid degradation in ambient conditions severely limit their stability and practical applications. This study demonstrates that incorporating UiO-66, a zirconium-based MOF, significantly enhances the performance and stability of tin halide perovskite solar cells (TPSCs).

View Article and Find Full Text PDF

Nucleation-Controlled Crystallization of Chiral 2D Perovskite Single Crystal Thin Films for High-Sensitivity Circularly Polarized Light Detection.

Adv Mater

January 2025

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.

2D Dion-Jacobson (DJ) chiral perovskite materials exhibit significant promise for developing high-performance circularly polarized light (CPL) photodetectors. However, the inherently thick nature of DJ-phase 2D perovskite single crystal limits their ability to differentiate CPL photons with the two opposite polarization states. In addition, the growth of DJ-phase perovskite single crystal thin films (SCTFs) has proven challenging due to the strong interlayer electronic coupling.

View Article and Find Full Text PDF

Experimental realization of valley vortex states in water wave crystals.

Sci Bull (Beijing)

January 2025

Key Laboratory of Ocean Observation-Imaging Testbed of Zhejiang Province, Ocean College, Zhejiang University, Hangzhou 310058, China. Electronic address:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!