We demonstrated a laser-diode, end-pumped picosecond amplifier. With effective shaping of the seed laser, we achieved 73 W amplified laser output at the pump power of 255 W, and the optical-optical efficiency was about 28%. The beam propagation factors M(2) measured at the output power of 60 W in the horizontal direction and the vertical direction were 1.5 and 1.4, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.51.006669 | DOI Listing |
We report an Yb-fiber-pumped picosecond optical parametric oscillator (OPO) delivering high average power in excellent beam quality throughout the mid-infrared (mid-IR). Using MgO:PPLN as the nonlinear crystal and configured as a singly-resonant oscillator in the mid-IR idler wave, the OPO provides up to 3.5 W average power in high spatial quality with M2<1.
View Article and Find Full Text PDFA continuous-wave-operation laser amplifier chain consisting of three multi-concentration-doped Yb:YAG slab gain modules (GMs) at room temperature is presented. The output power of 22.3 kW with the beam quality of 3.
View Article and Find Full Text PDFWe present a high-repetition-rate, high-pulse-energy, high-beam-quality, and high-average-power laser system using an ultraclean closed-type stimulated-Brillouin-scattering phase-conjugate mirror (SBS-PCM). By controlling microparticles of SBS-PCM down to 40 nm, thermal load capacity of such closed-type SBS-PCM was greatly improved, which presented the best reported cleanliness. The closed-type SBS-PCM, lacking scanning wedge plates, achieved reflectivity as high as 92% and showed no optical breakdown phenomena or obvious thermal effects at a 500 Hz pulse-repetition frequency (PRF).
View Article and Find Full Text PDFHigh average power lasers with high beam quality are critical for emerging applications in industry and research for defense, materials processing, and space applications. However, overcoming thermal effects in the gain medium remains the key challenge for increasing laser brightness at high powers. Here we report a means for increasing the beam brightness of high-power continuous-wave (CW) beams based on external cavity Raman lasers using diamond, a material with thermal properties far superior to any other laser material.
View Article and Find Full Text PDFA cryogenic composite-thin-disk amplifier with amplified spontaneous emission (ASE) rejection is implemented that overcomes traditional laser system problems in high-energy pulsed laser drivers of high average power. A small signal gain of 8 dB was compared to a 1.5 dB gain for an uncapped thin-disk without ASE mitigation under identical pumping conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!