A terbium(III)-organic framework for highly selective sensing of cytidine triphosphate.

Analyst

Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.

Published: November 2012

Highly selective sensing of cytidine triphosphate (CTP) against other triphosphate nucleosides including ATP, GTP and UTP is successfully achieved with a luminescent terbium(III)-organic framework (TbOF) of [Tb(2)(2,3-pzdc)(2)(ox)(H(2)O)(2)](n) (2,3-pzdc(2-) = 2,3-pyrazinedicarboxylate, ox(2-) = oxalate).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2an36188dDOI Listing

Publication Analysis

Top Keywords

terbiumiii-organic framework
8
highly selective
8
selective sensing
8
sensing cytidine
8
cytidine triphosphate
8
framework highly
4
triphosphate highly
4
triphosphate ctp
4
ctp triphosphate
4
triphosphate nucleosides
4

Similar Publications

Combining Hard Shell with Soft Core to Enhance Enzyme Activity and Resist External Disturbances.

Adv Sci (Weinh)

January 2025

Department of Cardiology, The First People's Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, 317500, China.

Immobilizing enzymes onto solid supports having enhanced catalytic activity and resistance to harsh external conditions is considered as a promising and critical method of broadening enzymatic applications in biosensing, biocatalysis, and biomedical devices; however, it is considerably hampered by limited strategies. Here, a core-shell strategy involving a soft-core hexahistidine metal assembly (HmA) is innovatively developed and characterized with encapsulated enzymes (catalase (CAT), horseradish peroxidase, glucose oxidase (GOx), and cascade enzymes (CAT+GOx)) and hard porous shells (zeolitic imidazolate framework (ZIF), ZIF-8, ZIF-67, ZIF-90, calcium carbonate, and hydroxyapatite). The enzyme-friendly environment provided by the embedded HmA proves beneficial for enhanced catalytic activity, which is particularly effective in preserving fragile enzymes that will have been deactivated without the HmA core during the mineralization of porous shells.

View Article and Find Full Text PDF

Two-dimensional inverse double sandwich CoB: strain-induced non-magnetic to ferromagnetic transition.

Phys Chem Chem Phys

January 2025

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

A full-scale structural search was performed using density functional theory calculations and a universal structural prediction evolutionary algorithm. This produced a lowest energy two-dimensional (2D) CoB structure. The CoB-1 global minimum structure has unusual inverse double sandwich features.

View Article and Find Full Text PDF

Fluorine-free organic framework polyelectrolyte membranes showing near frictionless ionic conductivities are gaining cognitive insights. However, the co-precipitation of COFs in the membranes often brings trade-offs to commission long-life electrochemical energy storage solutions. Herein, a durable and ionically miscible dual-ion exchange membrane based on triazine organic framework (TOF) is designed for alkaline redox flow batteries (RFB).

View Article and Find Full Text PDF

Objective: This study explores the influence of social network structures on self-management behaviors among older adults with diabetes in rural Korean villages, focusing on dietary management, physical activity, and blood glucose monitoring.

Design: Employing social network analysis (SNA), the study assessed network structures in three villages, focusing on variations in degree, closeness, and betweenness centralities to understand their impact on health behavior dissemination and adoption.

Results: The analysis identified significant differences in network configurations across the villages.

View Article and Find Full Text PDF

Unlocking Advanced Architectures of Single-Crystal Metal-Organic Frameworks.

Angew Chem Int Ed Engl

January 2025

Fudan University - Handan Campus: Fudan University, Department of Chemistry, 2205 Songhu Road, Laboratory of Advanced Materials, 200438, Shanghai, CHINA.

The synthesis of metal-organic frameworks (MOFs) with diverse geometries has captivated considerable interest due to their manifestation of novel and extraordinary properties. While much progress has been made in shaping regular polyhedral single-crystal MOFs, the creation of more complex, topologically intricate nanostructures remains a largely unexplored frontier. Here, we present a refined site-specific anisotropic assembly and etching co-mediation approach to fabricate a series of hierarchical MOF nanohybrids and single-crystal MOFs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!