In this study, the effect of coagulation pretreatment on membrane fouling and ultrasonic cleaning efficiency was investigated using a dead-end polytetrafluoroethylene (PTFE) microfiltration system. The extent of membrane fouling was examined under different coagulation mechanisms such as charge neutralization (CN), electrostatic patch effect (EPE) and sweep flocculation (SW). Fouling through EPE mechanism provided the greatest flux decline and least permeate flux recovery over CN and SW. EPE produces more stable, smaller and more compact flocs while CN and SW have large, easily degraded and highly-branched structured flocs. The predominant fouling mechanism of EPE, CN and SW is pore blocking, a combination of pore blocking and cake formation, and cake formation, respectively. Better permeate flux recovery is observed with SW over CN and EPE, which implies formation of less dense and more porous cake deposits. The morphology of fouled membranes was examined using scanning electron microscopy (SEM).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2012.425 | DOI Listing |
Med Image Anal
January 2025
School of Biomedical Engineering and Imaging Sciences, King's College London, UK. Electronic address:
Atrial fibrillation (AF), impacting nearly 50 million individuals globally, is a major contributor to ischaemic strokes, predominantly originating from the left atrial appendage (LAA). Current clinical scores like CHA₂DS₂-VASc, while useful, provide limited insight into the pro-thrombotic mechanisms of Virchow's triad-blood stasis, endothelial damage, and hypercoagulability. This study leverages biophysical computational modelling to deepen our understanding of thrombogenesis in AF patients.
View Article and Find Full Text PDFTissue Cell
January 2025
Institute of Regenerative Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China; Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264003, PR China. Electronic address:
Introduction: Pressure Injury (PI) is a complex disease process which is influenced by multiple factors, among which ischemia-reperfusion (I/R) injury is closely related to the progression of PI. But its biomarkers are still unclearly. Understanding its physiological mechanisms and related molecular biomarkers is a key to developing effective prevention and therapeutic strategies.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
Sewer overflows are a potential source of emerging contaminants to urban waters, posing a threat to ecosystems and human health. Herein, the performance and mechanism of ferrate(Ⅵ) (Fe(Ⅵ))/peroxymonosulfate (PMS), Fe(Ⅵ)/peroxydisulfate (PDS), and Fe(Ⅵ)/percarbonate (SPC) for the degradation of ofloxacin (OFL) in overflows were comparatively investigated. These systems achieved efficient degradation of OFL and the removal of conventional pollutants.
View Article and Find Full Text PDFPituitary
January 2025
Departments of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
Background: Arginine infusion stimulates copeptin secretion, a surrogate marker of arginine vasopressin (AVP), thereby serving as a diagnostic test in the differential diagnosis of suspected AVP deficiency (AVP-D). Yet, the precise mechanism underlying the stimulatory effect of arginine on the vasopressinergic system remains elusive. Arginine plays a significant role in the urea cycle and increases the production of urea.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Hematology, Second Xiang-ya Hospital, Central South University, Changsha, China.
Acute B-lymphoblastic leukemia (B-ALL) is a highly heterogeneous hematologic malignancy, characterized by significant molecular differences among patients as the disease progresses. While the PI3K-Akt signaling pathway and metabolic reprogramming are known to play crucial roles in B-ALL, the interactions between lipid metabolism, immune pathways, and drug resistance remain unclear. In this study, we performed multi-omics analysis on different patient cohorts (newly diagnosed, relapsed, standard-risk, and poor-risk) to investigate the molecular characteristics associated with metabolism, signaling pathways, and immune regulation in B-ALL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!