Evaluation of the micro-mechanical strength of resin bonded-dentin interfaces submitted to short-term degradation strategies.

J Mech Behav Biomed Mater

Department of Restorative Dentistry, Dental Materials Division, Piracicaba Dental School, State University of Campinas, Limeira Avenue 901, 13414-903 Piracicaba, Brazil.

Published: November 2012

The aim of this study was to evaluate the microtensile bond strength (μTBS) and confocal micropermeability of resin bonded-dentin specimens created using two representative two-step/self-etch adhesives submitted to short-term period degradation strategies such as simulated pulpal pressure, thermo- or mechanical-cycling challenges. Clearfil SE Bond (CSE) and Silorane adhesive (SIL) were bonded to flat deep dentin from seventy extracted human molars and light-cured for 10 s. Composite build-ups were constructed using with Filtek Z350 XT and Filtek P90 respectively. The specimens of each adhesive group were subjected to three different accelerated aging methods: (1) thermo-cycling challenge (5000 cycles); (2) mechanical-cycling load (200,000 cycles); (3) experiment and (4) conventional method for simulated pulpal pressure (20 cm H₂O). Control resin-bonded specimens were stored in distilled water for 24 h. μTBS and confocal microscopy (CLSM) micropermeability evaluation were performed and the results were analyzed using Two-way ANOVA and Tukey's tests (α=0.05). The CLSM evaluation revealed micro-cracks within the Silorane-bonded dentin subsequent to mechanical-cycling load, whereas, the simulated pulpal pressure induced evident micropermeability in both bonding agents. Mechanical loading provides discernible bonding degradation in a short-term period in resin-bonded dentin created using two-step/self-etch adhesives. However, simulated pulpal pressure may reduce the sealing ability of self-etch adhesives causing greater water uptake within the resin-dentin interface.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2012.06.010DOI Listing

Publication Analysis

Top Keywords

simulated pulpal
16
pulpal pressure
16
resin bonded-dentin
8
submitted short-term
8
degradation strategies
8
μtbs confocal
8
two-step/self-etch adhesives
8
short-term period
8
mechanical-cycling load
8
evaluation micro-mechanical
4

Similar Publications

The Amount of Orthodontic Force Reaching the Dental Pulp and Neuro-Vascular Bundle During Orthodontic Movements in the Intact Periodontium.

Medicina (Kaunas)

December 2024

Department of Cariology, Endodontics and Oral Pathology, School of Dental Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Str. Motilor 33, 400001 Cluj-Napoca, Romania.

: Most orthodontic forces are absorbed-dissipated before reaching the dental pulp and its neuro-vascular bundle (NVB); however, no data are available about their amounts. The objective of this study was to assess the amount of orthodontic force that reaches the dental pulp and its NVB during orthodontic movements in a healthy periodontium. : This study involved the second lower premolars of nine patients and 180 numerical simulations.

View Article and Find Full Text PDF

Nanoparticles Induced Biomimetic Remineralization of Acid-Etched Dentin.

J Dent (Shiraz)

December 2024

Dept. Conservative Dentistry and Endodontics, St.Joseph Dental College, Duggirala, Eluru, Andra Pradesh, India.

Statement Of The Problem: Dentin bonding with etch-and-rinse adhesives involves demineralizing the 5-8µm of the surface dentin to create micro space for resin infiltration. The presence of continuous fluid movement in dentin tubules and positive pulpal pressure prevents complete water replacement by resin monomers. This results in areas of demineralized dentin, which contain collagen fibers without resin infiltration.

View Article and Find Full Text PDF

Periodontal Breakdown, Orthodontic Movements and Pulpal Ischemia Correlations-A Comparison Between Five Study Methods.

J Clin Med

November 2024

Department of Cariology, Endodontics and Oral Pathology, School of Dental Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Str. Motilor 33, 400001 Cluj-Napoca, Romania.

: This study assessed the biomechanical behavior of dental pulp and the neuro-vascular bundle/NVB as well as the ischemic risks during orthodontic movements in a gradual horizontal periodontal breakdown, using five methods and aiming to identify the most accurate one. : Seventy-two models of second lower premolar (from nine patients) were subjected to 3 N of intrusion, extrusion, rotation, tipping, and translation. Five numerical methods, Tresca, Von Mises/VM, Maximum and Minimum Principal, and hydrostatic pressure were used in a total of 1800 numerical simulations.

View Article and Find Full Text PDF

Ischemic Risks Induced by Larger Orthodontic Forces on Dental Pulp and Neuro-Vascular Bundle in Reduced Periodontium.

J Clin Med

November 2024

Department of Cariology, Endodontics and Oral Pathology, School of Dental Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Str. Motilor 33, 400001 Cluj-Napoca, Romania.

There are few data about the ischemic risks induced by the large orthodontic forces during periodontal breakdown in dental pulp and neuro-vascular bundle (NVB) and none on the individual tissular stress distribution, despite their great importance for orthodontic treatment planning. Our aim was to assess, by a numerical analysis, the biomechanical behavior of dental pulp and the NVB during a simulated horizontal periodontal breakdown (1-8 mm), under 2-4 N of applied orthodontic forces and five movements (rotation, translation, tipping, intrusion, and extrusion). Additionally, the ischemic and degenerative-resorptive risks were assessed.

View Article and Find Full Text PDF

Multiple cell death modalities and immune response in pulpitis.

Int Endod J

January 2025

Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China.

Aim: To investigate the level and distribution of apoptosis, pyroptosis, necroptosis, and NETosis in pulpitis with or without necrosis on a basis of histological classification. Additionally, to examine the effect of pulpitis with necrosis (PWN) on the number and activation of peripheral and bone marrow (BM) neutrophils, as well as spleen lymphocytes, in a mouse model of pulpitis.

Methodology: The material comprised 20 permanent teeth, with or without caries, which were classified into three histological categories based on the distribution of inflammatory cells and the presence or absence of necrosis: (i) healthy pulp (HP), (ii) pulpitis without necrosis (PWON), and (iii) PWN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!