Charge transfer in cobalt oxide Co(3)O(4) in the spinel structure is evidenced by experimental results using x-ray diffraction (XRD), x-ray absorption near edge structure (XANES) spectroscopy, and Raman scattering at high pressures up to 42.1, 24.6 and 35.1 GPa, respectively. While the cubic structure was found to persist under pressure up to 42.1 GPa based on the XRD and Raman results, the mode Grüneisen parameter was calculated according to our Raman measurements. Our structural data refinement revealed a structural transition from the normal spinel structure at low pressures to a partially inverse spinel structure at pressures above 17.7 GPa. This transition may be caused by the interaction of charges between tetrahedral and octahedral sites via a charge transfer process. Evidence for the charge transfer process is further supported by changes of the pre-edge features in the XANES data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/24/43/435401 | DOI Listing |
J Am Chem Soc
January 2025
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
Effective delivery and controlled release of metallo-prodrugs with sustained activation and rapid response feed the needs of precise medicine in metal chemotherapeutics. However, gold-based anticancer drugs often suffer from detoxification binding and extracellular transfer by sulfur-containing peptides. To address this challenge, we integrate a thiol-activated prodrug strategy of newly prepared hypercoordinated carbon-centered gold(I) clusters (HCGCs) with their photosensitization character to augment the mitochondrial release of Au(I) in tumors.
View Article and Find Full Text PDFAppl Spectrosc
January 2025
Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
Time-resolved, rapid-scan Fourier transform infrared (FT-IR) difference spectra have been recorded upon illumination on photosynthetic reaction centers (RCs) from under fixed hydration conditions (relative humidity = 76%). Two different illumination schemes were adopted. Whereas the use of a laser flash (duration: 7 ns) made it possible to follow the kinetics of recombination of the light-induced state PQ to the neutral state PQ, the use of a 20.
View Article and Find Full Text PDFBiophys J
January 2025
Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom. Electronic address:
Photosynthetic organisms rely on a network of light-harvesting protein-pigment complexes to efficiently absorb sunlight and transfer excitation energy to reaction centre proteins where charge separation occurs. In photosynthetic purple bacteria, these complexes are embedded within the cell membrane, with lipid composition affecting complex clustering, thereby impacting inter-complex energy transfer. However, the impact of the lipid bilayer on intra-complex excitation dynamics is less understood.
View Article and Find Full Text PDFJ Environ Sci Health B
January 2025
Department of Chemistry and Chemical Engineering, Shenyang Institute of Science and Technology, Shenyang, China.
The widespread use of antibiotics has led to significant water pollution. Photocatalysis can effectively degrade antibiotics, but the performance is greatly limited by the photogenerated carrier recombination in the photocatalytic material g-CN. Constructing heterojunctions can enhance interfacial charge transfer, leading to more stable and efficient photocatalysis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mining and Explosives Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA.
This study examined the electrodissolution mechanism of five impure sphalerite samples, which differ significantly in purity levels, along with their partially oxidized counterparts in a 0.5 M HSO. Partially oxidized samples were prepared through an incomplete leaching of sphalerite using HSO with Fe(SO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!