Looking inside catalyst extrudates with time-resolved surface-enhanced Raman spectroscopy (TR-SERS).

Appl Spectrosc

Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.

Published: October 2012

AI Article Synopsis

  • Raman spectroscopy is a key nondestructive method for studying heterogeneous catalysts, but its use on millimeter-sized catalyst bodies is limited due to issues like large fluorescence signals and scattering.
  • Different techniques have been explored to tackle these challenges, including time-resolved Raman spectroscopy (TRRS), spatially offset Raman spectroscopy (SORS), and surface-enhanced Raman spectroscopy (SERS).
  • The paper highlights that TRRS is particularly effective in providing chemical information deep within catalyst bodies, reducing interference from fluorescence and enabling the study of localized activity through time-resolved SERS, thus enhancing the prospects for industrial catalysis research.

Article Abstract

Raman spectroscopy is one of the major characterization methods employed over the last few decades as a nondestructive technique for the study of heterogeneous catalysts and related catalytic reactions. However, the promise of practical applicability on millimeter-sized catalyst bodies, such as extrudates, has not been fulfilled completely. Large fluorescence signals and the highly scattering nature of the extrudates often hamper its practical usage. Different approaches to overcome this problem were examined, including the use of time-resolved Raman spectroscopy (TRRS), spatially offset Raman spectroscopy (SORS), surface-enhanced Raman spectroscopy (SERS), and combinations of these techniques. This paper demonstrates that especially TRRS can provide chemical information at depth within catalyst bodies, overcoming fluorescence background signals and allowing for visualization of analytes at different depths. It also examines the application of time-resolved SERS within catalyst bodies to gain insight into localized activity. With these options a wider applicability of Raman spectroscopy for industrial catalysis research becomes within reach.

Download full-text PDF

Source
http://dx.doi.org/10.1366/12-06698DOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
24
catalyst bodies
12
surface-enhanced raman
8
raman
6
spectroscopy
6
inside catalyst
4
catalyst extrudates
4
extrudates time-resolved
4
time-resolved surface-enhanced
4
spectroscopy tr-sers
4

Similar Publications

Ce1-xMnxVO4 with Improved Activity for Low-Temperature Catalytic Reduction of NO with NH3.

Chem Asian J

January 2025

Fudan University, Department of Environmental Science and Engineering, Shanghai Handan Road 220, 200433, Shanghai, CHINA.

Novel Ce1-xMnxVO4 catalysts prepared via modified hydrothermal synthesis were used in selective catalytic reduction of NO using NH3 (NH3-SCR). The Ce1-xMnxVO4 catalysts displayed optimum NO removal efficiency at 250 oC. Physicochemical properties including crystal type, morphology, particle size, elemental composition, BET surface area, chemical bond, and valence state were studied by XRD, TEM, EDS, N2 adsorption-desorption, Raman spectroscopy, and XPS.

View Article and Find Full Text PDF

In this contribution, we apply our newly developed ball-milling platform, which combines Raman spectroscopy and thermal (IR) imaging, as well as acoustic and high-speed optical video recordings, to the synthesis and transformation of citric acid-isonicotinamide (1:2) cocrystal polymorphs in transparent PMMA jars. Particularly, we demonstrate how Raman, temperature, acoustic, and video data are complementary and enable detection and connection of chemical and physical events happening during ball-milling in a time-resolved manner. Importantly, we show that the formation of the three cocrystal polymorphs can be detected through acoustic analyses solely.

View Article and Find Full Text PDF

Formulation of catechin hydrate nanoemulsion for fortification of yogurt.

J Food Sci Technol

February 2025

Department of Food Process Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203 India.

Unlabelled: Catechin hydrate (CH) is a kind of polyphenol present in many plantsincluding green tea, fruits, red wine and cocoa with very good antioxidant effect. The formulation of CH nanoemulsion increased the bioavailability and stability of catechin, allowing for easier food incorporation and faster absorption by the body. The major goal of the current study was to create a nanoemulsion as a reliable delivery mechanism for catechin hydrate and its incorporation into yogurt to increase its antioxidant activity.

View Article and Find Full Text PDF

Blood carries some of the most valuable biomarkers for disease screening as it interacts with various tissues and organs in the body. Human blood serum is a reservoir of high molecular weight fraction (HMWF) and low molecular weight fraction (LMWF) proteins. The LMWF proteins are considered disease marker proteins and are often suppressed by HMWF proteins during analysis.

View Article and Find Full Text PDF

This research prepared gelatinized waxy maize starch (WMS), low-amylose maize starch (LAS), and high-amylose maize starch (HAS) with different glutathione (GSH) content (5, 10, and 15 %) using high hydrostatic pressure (HHP) at 600 MPa. Scanning electron microscopy (SEM) revealed damaged morphology of WMS and complete swelled granules of LAS and HAS with different degree of gelatinization (DG) values, 92.86, 59.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!