Objectives: Hyperglycemia has been associated with an increased risk of cardiovascular morbidity and mortality. Although numerous studies have demonstrated that hyperglycemia is associated with the atherosis component of atherosclerosis, limited studies have addressed the independent role of hyperglycemia in the pathophysiology of sclerotic vascular disease. We hypothesized that hyperglycemia, as assessed by hemoglobin A1c (HbA1c), would be independently associated two common indices of arterial stiffness (pressure-strain elastic modulus (Ep) and Young's elastic modulus (YEM)).

Methods: We examined the cross-sectional association between HbA1c and arterial stiffness using B-mode ultrasound examination of the carotid artery in 9050 participants from the community-based Atherosclerosis Risk in Communities (ARIC) study. We used multivariable linear and logistic regression models to characterize the association between HbA1c and increased Ep and YEM.

Results: Higher values of HbA1c were associated in a graded fashion with increased arterial stiffness (P-trend < 0.001 for both EP and YEM). After adjusting for traditional risk factors, increasing HbA1c deciles were significantly associated with elevated EP (OR for the highest decile of HbA1c compared to the lowest, 2.01, 95% CI: 1.30, 3.11) and YEM (OR = 1.71, 95% CI: 1.15, 2.55).

Conclusion: Elevated HbA1c is associated with measures of increased arterial stiffness, even after accounting for arterial wall thickness. This is consistent with the hypothesis that hyperglycemia contributes to arterial stiffness beyond its effects on atherosis and suggests that hyperglycemia is associated with altered material within the arterial wall.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3936879PMC
http://dx.doi.org/10.1016/j.atherosclerosis.2012.09.003DOI Listing

Publication Analysis

Top Keywords

arterial stiffness
16
atherosclerosis risk
8
risk communities
8
hyperglycemia associated
8
elastic modulus
8
association hba1c
8
hyperglycemia
5
hyperglycemia arterial
4
stiffness
4
stiffness atherosclerosis
4

Similar Publications

Evaluation of Arterial Stiffness Parameters Measurement With Noninvasive Methods-A Systematic Review.

Cardiol Res Pract

December 2024

Department of Family Medicine, Medical University of Białystok, Podlaskie Voivodeship, 15-054 Białystok, Poland.

Arterial stiffness, as determined by pulse wave velocity (PWV), is a recognized marker of cardiovascular risk. Noninvasive technologies have enabled easier and more accessible assessments of PWV. The current gold standard for measuring carotid-femoral PWV (cfPWV)-a reliable indicator of arterial stiffness-utilizes applanation tonometry devices, as recommended by the Artery Society Guidelines.

View Article and Find Full Text PDF

Background: Sedentary behaviour (SB) is detrimental to cardiometabolic disease (CMD) risk, which can begin in young adulthood. To devise effective SB-CMD interventions in young adults, it is important to understand which context-specific SB (CS-SB) are most detrimental for CMD risk, the lifestyle behaviours that cluster with CS-SBs and the socioecological predictors of CS-SB.

Methods And Analysis: This longitudinal observational study will recruit 500 college-aged (18-24 years) individuals.

View Article and Find Full Text PDF

Fibrosis is the main pathological feature of aortic stiffness, which is a common extracardiac comorbidity of heart failure with preserved ejection fraction (HFpEF) and a contributor to left ventricular (LV) diastolic dysfunction. Systemic low-grade inflammation plays a crucial role in the pathogenesis of HFpEF and the development of vascular fibrosis. In this study, we investigate the inflammatory mechanism of aortic fibrosis in HFpEF using a novel mouse model.

View Article and Find Full Text PDF

Foods rich in polyphenols have beneficial effects on health. This study aimed to examine the impact of dark chocolate on endurance runners' arterial function. Forty-six male amateur runners, aged 25-55, participated.

View Article and Find Full Text PDF

Trimethylamine -oxide (TMAO), a gut microbiome-derived metabolite, participates in the atherogenesis and vascular stiffening that is closely linked with cardiovascular (CV) complications and related deaths in individuals with kidney failure undergoing peritoneal dialysis (PD) therapy. In these patients, arterial stiffness (AS) is also an indicator of adverse CV outcomes. This study assessed the correlation between serum TMAO concentration quantified with high-performance liquid chromatography and mass spectrometry and central AS measured by carotid-femoral pulse wave velocity (cfPWV) in patients with chronic PD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!