A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Calculating diffusion and permeability coefficients with the oscillating forward-reverse method. | LitMetric

Calculating diffusion and permeability coefficients with the oscillating forward-reverse method.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Physics and Biophysical Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada N1G 2W1.

Published: September 2012

The forward-reverse or FR method is an efficient bidirectional work method for determining the potential of mean force w(z) and also supposedly gives in principle the position-dependent diffusion coefficient D(z). Results from a variation called the OFR (oscillating FR) method suggest inconsistencies in the D(z) values when calculated as prescribed by the FR method. A new steering protocol has thus been developed and applied to the OFR method for the accurate determination of D(z) and also provides greater convergence for w(z) in molecular dynamics simulations. The bulk diffusion coefficient for water was found to be (6.03±0.16)×10(-5) cm2/s at 350 K with system size dependence within the statistical error bars. Using this steering protocol, D(z) and w(z) for water permeating a dipalmitoylphosphatidylcholine (DPPC) bilayer were determined. The potential of mean force is shown to have a barrier of peak height, wmax/(kBT)=8.4, with a width of about 10 Å on either side from the membrane center. The diffusion constant is shown to be highest in the core region of the membrane [peak value ∼(8.0±0.8)×10(-5) cm2/s], lowest in the head-group region [minimum value ∼(2.0±0.3)×10(-5) cm2/s], and to tend toward the bulk value as the water molecule leaves the membrane. The permeability coefficient P for H2O in DPPC was determined using the simulated D(z) and w(z) to give values of (0.129±0.075) cm/s at 323 K and (0.141±0.043) cm/s at 350 K. The results show more spatial detail than results presented in previous work while reducing the computational and user effort.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.86.036707DOI Listing

Publication Analysis

Top Keywords

forward-reverse method
8
potential force
8
diffusion coefficient
8
steering protocol
8
method
6
calculating diffusion
4
diffusion permeability
4
permeability coefficients
4
coefficients oscillating
4
oscillating forward-reverse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!