An experimental study of jets and sprays formed by a spark-induced bubble collapsing near a plate with a hole is presented. A Perspex plate with a hole at its center is placed in a half-filled water tank with its top face near the air-water interface. A bubble is created using a low-voltage electrical spark below the hole in the plate. The bubble expands against the hole, which pushes the liquid present within the hole and leads to an initial primary jet of water that emerges from the other end of the hole into air. The bubble subsequently collapses and leads to a second jet that is characterized by short bursts of liquid spray followed by a thicker continuous liquid column. The impact of the sprays onto the primary jet leads to perturbations in the jet and the breakup of the latter into fine droplets. The entire phenomenon is recorded using a high-speed camera to visualize the mechanism both within and outside the hole. The results give a clearer indication of the mechanism behind a recently reported phenomenon on the formation of impacting jets caused by bubble expansion and collapse at the micrometer length scale. The variation of the jet characteristics with parameters such as the position of the water-air interface with respect to the plate and the hole geometry (i.e., the hole diameter and the plate thickness) is also presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.86.036309 | DOI Listing |
Sci Rep
January 2025
Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Phuttamonthon 4 Road, Nakhon Pathom, 73170, Thailand.
A set of nCN/WO composites was synthesized through a simple thermal treatment for gold recovery from the simulated effluent of a non-cyanide-based plating bath. The obtained results exhibited that all nCN/WO composites demonstrated a higher photocatalytic activity for gold recovery than their pristine components due to the formation of nanocomposites which paved a convenient pathway for charge transfer. Among all synthesized composites, the 5.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Łukasiewicz Research Network-Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw, Poland.
The purpose of the experiment was to indicate which element of the production process of flexible printed circuit boards is optimal in terms of the reliability of final products. According to the Taguchi method, in the experiment, five factors with two levels each were chosen for the subsequent analysis. These included the number of conductive layers, the thickness of the laminate layer, the type of the laminate, the diameter of the plated holes, and the current density in the galvanic bath.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Mechanical Engineering Department, Faculty of Engineering, South Valley University, Qena 83523, Egypt.
Composite materials play a crucial role in various industries, including aerospace, automotive, and shipbuilding. These materials differ from traditional metals due to their high specific strength and low weight, which reduce energy consumption in these industries. The damage behavior of such materials, especially when subjected to stress discontinuities such as central holes, differs significantly from materials without holes.
View Article and Find Full Text PDFInjury
December 2024
Golden Jubilee Medical Center, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.
Background: Severe metaphyseal comminution and sizable bone defect of the distal femur are high risks of fixation failure. To date, no exact magnitude of comminution and bone loss is determined as an indication for augmentation of fixation construct. The present study aimed to investigate the influence of metaphyseal gap width, working length, and screw distribution on the stability of the fixation construct.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
Flexible thermoelectric generators (FTEGs) can continuously harvest energy from the environment or the human body to supply wearable electronic devices, which should be a clean energy solution and provide an opportunity to satisfy the increasing power consumption of multimodal sensing and data transmission in wearable electronic devices. Here, the 64-pair FTEG was fabricated by introducing the plated through-hole and heterotypic electrode structures to optimize the thermal transport, showing the largely improved output power of 4.1 mW and record-high power density of 312 μW cm at a given ambient temperature of 15 °C inside a measurement equipment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!