We develop a relativistic variational model for a nematic liquid crystal interacting with an electromagnetic field. The constitutive relation for a general anisotropic uniaxial diamagnetic and dielectric medium is analyzed. We discuss light wave propagation in this moving uniaxial medium, for which the corresponding optical metrics are identified explicitly. A Lagrangian for the coupled system of a nematic liquid crystal and the electromagnetic field is constructed, from which a complete set of equations of motion for the system is derived. The canonical energy-momentum and spin tensors are systematically obtained. We compare our results with those within the nonrelativistic models. As an application of our general formalism, we discuss the so-called Abraham-Minkowski controversy on the momentum of light in a medium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.86.031703 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!