Theoretically core-multishell nanowires under a cross-section of hexagonal geometry should exhibit peculiar confinement effects. Using a hard X-ray nanobeam, here we show experimental evidence for carrier localization phenomena at the hexagon corners by combining synchrotron excited optical luminescence with simultaneous X-ray fluorescence spectroscopy. Applied to single coaxial n-GaN/InGaN multiquantum-well/p-GaN nanowires, our experiment narrows the gap between optical microscopy and high-resolution X-ray imaging and calls for further studies on the underlying mechanisms of optoelectronic nanodevices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl303178uDOI Listing

Publication Analysis

Top Keywords

core-multishell nanowires
8
probing quantum
4
quantum confinement
4
confinement single
4
single core-multishell
4
nanowires theoretically
4
theoretically core-multishell
4
nanowires cross-section
4
cross-section hexagonal
4
hexagonal geometry
4

Similar Publications

III-V semiconductor nanowires (NWs), such as those based on GaAs, are attractive for advanced optoelectronic and nanophotonic applications. The addition of Bi into GaAs offers a new avenue to enhance the near-infrared device performance and to add new functionalities, by utilizing the remarkable valence band structure and the giant bowing in the bandgap energy. Here, we report that alloying with Bi also induces the formation of optically-active self-assembled nanodisks caused by Bi segregation.

View Article and Find Full Text PDF

Polytypism in GaAs/GaNAs core-shell nanowires.

Nanotechnology

December 2020

Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.

We report the crystal structures of GaAs and GaAs/GaNAs/GaAs core-multishell nanowires (NWs). From statistical investigations by x-ray diffraction (XRD) and electron backscattered diffraction (EBSD) pattern analysis, we statistically and microscopically resolve the zinc-blende (ZB) and wurtzite (WZ) polytypism within the NWs. The XRD analysis shows a smaller fraction of WZ segments in the NWs with a larger concentration of nitrogen.

View Article and Find Full Text PDF

Core/shell nanowire (NW) heterostructures based on III-V semiconductors and related alloys are attractive for optoelectronic and photonic applications owing to the ability to modify their electronic structure via bandgap and strain engineering. Post-growth thermal annealing of such NWs is often involved during device fabrication and can also be used to improve their optical and transport properties. However, effects of such annealing on alloy disorder and strain in core/shell NWs are not fully understood.

View Article and Find Full Text PDF

Nearly a 30% increase in the ferromagnetic phase transition temperature has been achieved in strained MnAs nanocrystals embedded in a wurtzite GaAs matrix. Wurtzite GaAs exerts tensile stress on hexagonal MnAs nanocrystals, preventing a hexagonal to orthorhombic structural phase transition, which in bulk MnAs is combined with the magnetic one. This effect results in a remarkable shift of the magneto-structural phase transition temperature from 313 K in the bulk MnAs to above 400 K in the tensely strained MnAs nanocrystals.

View Article and Find Full Text PDF

Engineering Spiny PtFePd@PtFe/Pt Core@Multishell Nanowires with Enhanced Performance for Alcohol Electrooxidation.

ACS Appl Mater Interfaces

August 2019

College of Chemistry, Chemical Engineering and Materials Science , Soochow University, 199 Renai Road , Suzhou 215123 , P.R. China.

Engineering robust electrocatalysts is always a key point in direct alcohol fuel cells. Catalysts with a one-dimension (1D) structure are well studied and considered as promising candidates among various catalysts in the past decades; however, the precise regulation on the surface structure of 1D nanomaterials is still a worthy subject. By creatively introducing a trimetallic nanoalloy, core@multishell structure, and 1D nanowire (NW) morphology, we have constructed a kind of novel spiny PtFePd@PtFe/Pt core@multishell 1D NW catalysts with PtFePd as the core and PtFe/Pt as the multishell on the basis of improving catalytic property.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!